and silver as-
002¢,. Com-

in a-iron has
:se data to es-
grain bound-

er and that a
positions will

orus segrega-
isition, calcu-

14

STRUCTURE AND
ENERGY OF
HETEROPHASE
INTERFACES

In Section 13.2, we focused our attention on homophase interfaces, where there was
a structural discontinuity between two crystals of the same phase, as illustrated in
Figures 12.1 and 12.2, for example. In Section 13.2.5, we calculated the interfacial
energy of an f.c.c.—h.c.p. interface (Fig. 12.4), because it followed directly from cal-
culation of the stacking fault and twin boundary energies in that section. However,
the f.c.c.—h.c.p. interface is actually a heterophase interface, because the two phases
on opposite sides of the interface have different crystal structures. This represents
one limiting type of heterophase boundary at which there is a change in Bravais lat-
tice, but no change in composition across the interface. In this chapter, we examine
the structure and properties of the other types of heterophase interfaces that show a
change in composition or both composition and lattice across the interface between
two different phases. We begin by examining a planar, fully coherent interface be-
tween two different phases that have the same Bravais lattice and orientation, but
differ in composition. An example of this is illustrated by the G.P. zone in Figure
12.3. In our treatment of this situation, we will derive a series of equations based on
a nearest-neighbor broken bond (regular solution) model to calculate the composi-
tion profiles across the various interfaces of the aluminum-silver G.P. zone in Fig-
ure 12.3. We then combine our approaches to quantifying structural and composi-
tional changes across an interface to treat semicoherent and inclined interfaces such
as those shown in, for example, Figures 12.5 and 12.7. Next we look at other prop-
erties of heterophase interfaces, such as their roughening, kinetic and segregation
behavior, for comparison with the same properties discussed previously for
solid—vapor, solid-liquid and homophase solid—solid interfaces.
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14.1. INTERPHASE BOUNDARY ENERGY

In principle, it is possible to determine the interphase boundary energy between two
solid phases by (a) the thermal grooving technique, (b) measuring contact angles,
(c) performing nearest-neighbor bond-breaking or atomistic calculations, and (d)
measuring the coarsening behavior of coherent precipitates; all of these methods
have been utilized [24]. Unfortunately, in many of the experimental data reported in
the literature, there is considerable uncertainty in the values of the interfacial energy
because the orientation relationship between the two phases and the structure of the
interface were not determined. This uncertainty arises because the interfacial energy
of a heterophase interface depends on the orientation relationship and atomic
matching at the interface in much the same way as the grain boundary energy in
Section 13.2 depended on whether the boundary was a low- or high-angle tilt or
twist boundary. In addition, some measurements were not obtained under carefully
controlled conditions, and surface contamination may have affected the results.

In spite of the rather large uncertainty often associated with measurement of
the interphase boundary energy in any one investigation, there have been enough
measurements made on various types of heterophase interfaces that it is possible to
assign a reasonable range of values for the interfacial energies of the three main
types of planar heterophase interfaces. Although tables of interfacial energies were
provided for the solid-vapor, solid-liquid and homophase interfaces discussed pre-
viously, here we provide only ranges for various heterophase interfaces because of
the uncertainties just mentioned. The ranges provided in Table 14.1 correspond to
coherent interfaces as in Figures 12.3 and 12.4, to semicoherent interfaces as in Fig-
ure 12.5, and to incoherent interfaces, as in Figure 12.6.

There have not been any accurate experimental determinations of the interfa-
cial energy of a stepped heterophase interface such as that shown in Figure 12.7.
The elastic strain energy associated with such an interface has been calculated [56],
and, in principle, it can be added to the compositional component of the interfacial
energy to obtain an estimate of the interphase boundary energy, as described in Sec-
tion 14.5.4. Recent atomistic calculations have been performed to determine the in-
terfacial energies of ledged f.c.c.—b.c.c. interfaces in iron and nickel-chromium al-
loys [100-102]. Values obtained in these studies indicate that the interfacial
energies of coherent, stepped interfaces should lie in the lower end of the range for a
semicoherent interface given in Table 14.1.

Table 14.1. Ranges of solid-solid interphase boundary
energies S for three types of planar interfaces

Interface S (mJ/m?)

Coherent 5-200
Semicoherent 200-800
Incoherent 800-2500

14.2. COHER
AND ENERGY

The treatments ¢
the same crystal
of interface are
model and the t
described in ch
chapter.

14.2.1. Becke

The simplest an
=rface between
[103]. He empl
solid—solid inte:
geneous up to th

where Ns{hkl) iS
the coordinatios
fractions of solu
10 the regular so

To illustr
Problem 2.11. T
£10.3°C and cor
coherent {111}
and X, = 0.985
0.40 nm, so N,
(111} plane. W
(2315 J/mol'K)
222),

ss :
Y c(AuvNi)

This is a fairly |
e high positiv

The main
mitely sharp, as
boundary width
crete lattice plas
loys with a larg
=guation is app



ontact angies,
tions, and (d)
hese methods
ita reported m
rfacial energy
ructure of the
rfacial energy
p and atomic
h-angle tilt or
nder carefully
i results.
sasurement of
been enough
is possible to
he three main
energies were
discussed pre-
es because of
correspond to
aces as in Fig-

of the interfa-
1 Figure 12.7.
tlculated [56],
the interfacial
cribed in Sec-
ermine the in-
<hromium al-
he interfacial
the range for a

14.2. COHERENT INTERPHASE BOUNDARY STRUCTURE AND ENERGY 379

14.2. COHERENT INTERPHASE BOUNDARY STRUCTURE
AND ENERGY

The treatments discussed in this section apply to the special case of two phases with
the same crystal structure but different compositions. Three treatments of this type
of interface are described, two of which are based on our familiar broken-bond
model and the third uses a continuum approach to the problem. These theories are
described in chronological order, which is convenient in the development of this
chapter.

14.2.1. Becker Model

The simplest and earliest calculation of the interfacial energy of a fully coherent in-
terface between two phases a and B that differ in composition was done by Becker
[103]. He employed a nearest-neighbor broken-bond model to derive the coherent
solid—solid interphase boundary energy +y$S, assuming that both phases are homo-
geneous up to the interface, as illustrated in Figure 14.1. The energy is given as

V&S = Nypunz{Xa — Xa)’e, (14.1)

where Ny is the number of atoms per unit area on the {4k/} interface plane, z; is
the coordination number across the interface, X, and X, are the equilibrium atom
fractions of solute B in the a and B phases, respectively, and € is defined according
to the regular solution model in Eq. (2.19).

To illustrate the use of Eq. (14.1), consider the gold-nickel system shown in
Problem 2.11. This alloy possesses a miscibility gap with a critical temperature 7, =
810.3°C and composition X 5§ = 0.706. Suppose we want to calculate the energy of a
coherent {111} interphase boundary at 400°C. From the phase diagram, X, = 0.075
and Xj = 0.985 at 400°C so that (X, — Xp)* = 0.828. The lattice parameter of gold is
0.40 nm, s0 Ny(y1) = 4/7/3(0.4x10~ nm)? = 1.44x10'® atoms/m? and z; = 3 for the
{111} plane. We can find ) (and thus €) from T, and X § using Eq. (2.27) as ) =
(8.315 J/mol-K)(1083.3 K)/2(0.706)(0.295) = 21,695 J/mol. Since € = (M/12N, (Eq.
2.22),

(1.44x10"° atoms/m?)3(0.828)(21,695 J/mol)
Y c(Au-Ni) = 23
12(6.022x10%/mol)

=0.107 J/m2.

This is a fairly high value for a coherent interphase boundary energy, mainly due to
the high positive enthalpy of mixing in the gold—nickel system.

The main limitation of Eq. (14.1) is that it assumes that the boundary is infi-
nitely sharp, as illustrated in Figure 14.1, and does not include the interphase
boundary width as a thermodynamic variable. The gradient energy theory and dis-
crete lattice plane models that follow show that this assumption is only valid for al-
loys with a large positive enthalpy of mixing ({2 > 0) at 0 K. Thus, although this
equation is appealingly simple and it can be used to obtain an estimate of the inter-




380 STRUCTURE AND ENERGY OF HETEROPHASE INTERFACES

Cg, concentration of B ——

| .— Boundary

Distance —>

Figure 14.1. lllustration of composition versus distance across an ideal planar boundary be-
tween the a and B phases. From [104] reprinted by permission of John Wiley & Sons, Inc.

phase boundary energy, it does not properly describe the underlying physics associ-
ated with many interphase boundaries.

14.2.2. Cahn-Hilliard (Gradient Energy) Model

Cahn and Hilliard [10] developed a continuum description of the coherent inter-
phase boundary energy by considering a flat interface of area 4 between two
isotropic phases a and B of composition C,, and Cp and assuming that the free ener-
gy of nonequilibrium material of composition intermediate between C, and Cp can
be represented by a continuous free-energy function Gy(C) as shown in Figure 14.2.
The function Gy(C) is identical to G® in Figures 2.8 and 2.9, for example. They ex-
press the total free energy G of the solution as a multivariable Taylor’s series expan-
sion about Gy, the free energy per molecule of a solution of uniform composition C.
By considering only a one-dimensional composition change across the interface and
neglecting derivative terms higher than the second, they obtained

G=AN, f [Go(C) + k(dC/dx)?] dx, (14.2)

where N, is the number of molecules per unit volume and
k = —[82G/dCaV2C ], + [02G/(3|VC|)*]o. (14.3)

Equation (14.2) indicates that to first approximation, the free energy of a small vol-
ume of nonuniform solution can be expressed as the sum of two contributions, one
being the free energy that this volume would have in a homogeneous solution
(Go(C)) and the other being a gradient energy contribution (k(dC/dx)?), which is a
function of the local composition.

The specific interfacial free energy ySS is, by definition, the difference per
unit area between the actual free energy of the system and that which it would have
if the properties of the phases were continuous throughout; thus, it can be written as
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G (c) (J/molecule)

— AC, —t=—AC,
0 C a C ¢ p 1
Mole fraction of B

Figure 14.2. The function G,(C) for T less than the critical temperature T.. Reprinted with per-
mission from [10] by Elsevier Science Ltd., Oxford, England and [104] reprinted by permission
of John Wiley & Sons, Inc.

vSS=N, f ” [AG(C) + k(dC/dx)?] dx, (14.4)

AG(C)=Go(O) - [Crpt+ (1 -O)pf] (14.5)
and p. § and p§ are the chemical potentials per atom of the species 4 and B in the a
or B phases at equilibrium. The quantity AG(C) may therefore be referred to as the
free energy per atom of transferring material from an infinite reservoir of composi-
tion C, or Cg to material of composition C. According to Eq. (14.4), the more dif-
fuse the interface is, the smaller the contribution will be of the gradient energy term
k(dC/dx)? to v SS. However, this decrease in energy can only be achieved by intro-
ducing more material of nonequilibrium composition at the interface and thus at the
expense of increasing the integrated value of AG(C). At equilibrium, the composi-
tion variable will be such as to minimize the integral of this equation. (This is equiv-
alent to the requirement that the chemical potentials be constant throughout the sys-
tem.)

To obtain a composition profile with a stationary value and a minimum value
for v 55, the following condition must hold

AG(C) = k(dC/dx)2. (14.6)
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Changing the variable of integration from x to C and substituting Eq. (14.6) into Eq.
(14.4) then yields

C,|
ySS=2N, fc ® [KAG(C)]"2 dC. (14.7)

Cahn and Hilliard [10] examine Eq. (14.7) in two forms: (a) to determine the func-
tional dependence of ySS on temperature in the immediate vicinity of the critical
temperature T, at which the two phases attain the same critical composition C,, ané
(b) to determine the absolute value of yS$S and its temperature dependence outsids
the range T ~ T by using a regular solution model to evaluate the gradient term =
and the free energy function AG(C).

In the first case, if G, is expanded in a Taylor’s series about C,, and k is as-
sumed to be continuous and nonvanishing in the vicinity of the critical point, the in-
terfacial energy is evaluated as

Y351 = V2N, 38)x 23T, - T)*?, (14.8)

where 8 and g are inherently positive constants defined by the following derivatives
of Gy evaluated at C=C,and T= T,

8 = (3*Gy/aC*)/4! (14.92)
L =(3°Gy/aTaC?/2\. (14.9%)

Therefore, at the critical temperature, the interfacial energy is proportional
(T, - TP

Furthermore, if the composition across the interface is such that dC/dx =
(AG/k)"2, then inspection of the AG function in Figure 14.2 indicates that to satisfy
this equation the composition profile must be sigmoidal in shape, as shown in Fig-
ure 14.3. Near the critical temperature, the thickness L of the interface is obtained 2=

L(T"Tc) - 2[2K/E(Tc - D] 172 (14.10)

and it becomes evident that the thickness of the interface increases with increasing
temperature and becomes infinite at the critical temperature. Qualitatively, this i=
the same type of behavior depicted schematically in Figure 3.3. Note that this trez:-
ment assumes that k is a positive quantity.

In the second case, if the following properties of a regular (R) solution (refer
to Sections 2.4 and 2.5) are used:

C.= 0.5 (14.112)

my=QC?—kgThn (1-C) (14.115)
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Mole fraction of B

x, distance

Figure 14.3. Composition of a and B in the vicinity of the interphase boundary. Note the dif-
ference between this profile and that shown in Figure 14.1. Reprinted with permission from
[10] by Elsevier Science Ltd., Oxford, England and [104] reprinted by permission of John Wiley
& Sons, Inc.

Q= 2k T, (14.11¢)

B Q
= @C-Dpp (14.11d)

In

then an expression for the free energy referred to a standard state of an equilibrium
mixture of a and 3 becomes

AGy = GR(C) - Gx(C,) (14.12a)

=Q(C—C,)2+kBT[ClnC£+(1 -O)ln 11_"5], (14.12b)

in which C, can be set equal to either of the compositions C, or Cg as indicated in
Figure 14.2, and (Q is the regular solution parameter (Eq. 2.22). If Eq. (14.12b) is
differentiated and the values for 3 and r in Egs. (14.9) are substituted, it is found
that

= 2ky (14.13a)
4kgT,
gf%- (14.13b)




384 STRUCTURE AND ENERGY OF HETEROPHASE INTERFACES

These parameters can then be substituted into the general equation for the interfz-
cial free energy giving

YR = 2NxphkpT.y S5, (14.19)

where 35 is a reduced interfacial energy defined by

B/ AGg \112
SS — =R
v J;u (kBTc) dC (14.15)

and the parameter xy has the dimensions of length and represents a root-mean-
square effective interaction distance for the energy in a concentration gradient. The
parameter xp is very sensitive to the exact nature of long-range molecular interac-
tions and can vary from r/\/3, where r, is the interatomic distance, for a simple
nearest-neighbor interaction, to a value of (11/7)!"2r, for a 6-12 potential.

The integral in Eq. (14.15) has been evaluated numerically and is plotted
in Figure 14.4a as v3° versus 7/T, and in Figure 14.4b as log(y 5S) versus log
(1-7/T,). An approximate expression for yS§ that is valid over the whole tempera-
ture range was obtained from these data and is given by

max)1/2
vS§ ~ 2viR(kBTc)l/2[%][1 - (% = %)(Tl)] (14.162)

C 1-
AGR™ = 2k T,(C,— C,)* + kBT[Cc In "CTC' +(1-C)ln 1 gc

] (14.16b)

AC.=(C.-C) (14.16¢)

and C. is the critical composition. In the case of a symmetric miscibility gap, C, =
0.5, as shown in Figure 14.2. This equation can be used with Eq. (14.11d) to calcu-
late y&} with an error of less than one percent. As in the previous case, the interface
thickness can be defined in the case of a regular solution model and is given by

r \/5{1 [Tc(l—2Ce)2]—l/2] (14.17)

For a regular solution the interface profile is symmetric about C = 0.5 (Fig. 14.3).
This quantity has been calculated numerically and is plotted versus 7/7, in Figure
14.5. When T ~ T, an equation similar to Eq. (14.10) results for the regular solution
model as

Ly T- 1/2
—(T~T)=2 = . 14.18
Pl [(Tc—n] =0
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0.8 10
/T >

Figure 14.5. Plot of interfacial width Lg/xg versus T/T, for a regular solution. Reprinted wi=
permission from [10] by Elsevier Science Ltd., Oxford, England.

An empirical expression for the temperature dependence of the liquid—vaper
interfacial energy was given in Eq. (3.16) in Section 3.1, where it was indicated tha:
a value of n = 1.2 fitted the behavior of many substances. This equation with a valus
of n = 1.22 is plotted as a dashed line in Figure 14.4b, where it is seen that Eq.
(3.16) agrees with the temperature dependence of the interfacial energy from the
Cahn-Hilliard theory to within a few percent over a major portion of the temperz-
ture range. This shows a striking similarity in the behavior of the interfacial energies
of liquid—vapor and coherent solid—solid interfaces.

14.2.3. Discrete Lattice Plane Model

More recently, Lee and Aaronson [105] developed a discrete lattice plane (DLP).
regular solution model to calculate the interphase boundary energy and interfacial
concentration profiles across coherent interphase boundaries. Although the DLP
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model was originally developed by Wynblatt and Ku [106] to analyze surface segre-
gation, these two processes are physically analogous, because the movement of
atoms to or away from a coherent interface in an attempt to reach an equilibrium
state is similar to segregation to a surface that is initially not in an equilibrium con-
figuration. The problem is thus reduced to calculating AH and AS, the enthalpy and
entropy changes accompanying the net atomic movements required to reach the
equilibrium configuration of the a and B phases from an initial state. The homoge-
neous a phase is taken as the initial or reference state in this treatment for conve-
nience.

In this model, the system is assumed to consist of n solute (B) atoms in N
atomic sites. When equilibrium is achieved throughout the system, the ith layer of
the boundary region parallel to the interface plane contains »; of B atoms per unit
area at the interface Ny, such that X; is the atom fraction of B in the ith bound-
ary layer, as illustrated in Figure 14.6. This figure also shows how the nearest-
neighbor atoms are distributed around an atom P on the ith boundary plane, where
z) is the lateral coordination number and z; is the coordination number to the near-

est neighboring atoms in the j plane, as in Eq. (6.30). The total coordination num-
ber z is thus,

z=7+2) z, (14.19)

The average bond enthalpy change attending the breaking of bonds between a
B atom in the bulk a phase with composition X, and its nearest neighbors and the

Xiej

s Xi.
/22 e

Xier = Nyyy/N
‘ 2172 e 1= Nyey/Ngtnkiy
(i) —o= =e— X; = N¢/Ngnkn)
Z, P 21/2 _ /N
- 73/ = Xi.1 = N2/ Ng(nkiy

- Xi.2

Figure 14.6. Diagram showing the distribution of z nearest neighbors about atom P in adja-
cent planes parallel to (hki). z; is the unidirectional vertical coordination number to the Jjth plane

as determined from the plane i. Reprinted with permission from [105] by Elsevier Science Ltd.,
Oxford, England.
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forming of bonds between this atom and its nearest neighbors in the ith boundars
layer is

1
A2 Ky + X))z + X2y~ Xz}~ €4) (14.202
J

and a similar expression can be written for the bond enthalpy change undergone =
an A atom displaced from the ith o boundary plane to the bulk as

1 ‘
SO Ky + Xz + X2y~ Xz} (€an — €a) (14208
4

The sum of Egs. (14.20a and b) represents the enthalpy change associates
with the segregation of a B atom to the ith boundary plane A, that is,

Ak = e{X,z~ Xz = D Xy + X))z}, (1421)
7

where € = €,5 — 1/2(e44 + €55) and the total bond enthalpy required to reach e
equilibrium state from the reference state is, thus,

AH = Nypay D (X; = X)Ah, (1422)

where the sum is used to denote summation over the entire boundary region. The
binding enthalpies are dependent on orientation through z; and z; in Eq. (14.21).

The entropy change attending segregation to the boundary is due to the con-
figurational entropy difference between the equilibrium state and the reference staiz
[105] and is given by

X 1-X,
AS = —Nypuyks Z [X, ln}j+(1 ~-X)In l—X;]' (14.23)

The equilibrium solute distribution in the boundary region is achieved when

3(AG)
SO - 4.24)
oxX, 0. Qi

AG=AH-TAS (14.25)

and Eq. (14.22) is substituted for AH and Eq. (14.23) for AS. Equation (14.24) then
yields a series of difference equations that must be solved simultaneously for X; ac-
cording to

1 1
2e{X,z Xz - ; Ky + X )z} — kBT{ln G ey } =0. (14.26)
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The summation is performed over all boundary planes whose composition differs
significantly from either X, or (1 — X,) and a computer is used to evaluate the X;
from this equation.

As in the previous Cahn-Hilliard analysis [10], the interfacial energy is de-
fined as the free energy difference between an equilibrated mixture of o and 8, and
homogeneous o and B of equilibrium composition which are continuous up to the
interface. When AH and AS are substituted into Eq. (14.25) for the total free energy
AG above and appropriate mathematical rearrangements are performed [105], the
coherent boundary energy becomes

Y8 = Nygan Z{—e()c CX)Ez+e S K-Xu)z
i J

X 1-X
+ In——+(1-X; Ll 14.
kBT[X, In X, (1-X)In l—X,,]] (14.27)

When T = 0 K, Eq. (14.27) is simplified by noting that the interface is no
longer diffuse, since both X, and the kg7 terms become equal to zero and thus so
must all the values for X; in the o phase. Similarly, when the B phase is considered,
X, and all the values of X; are replaced by —X; and —X], and these terms must be uni-
ty at 0 K. Hence, the concentration difference across the interface jumps directly
from zero to unity and the only remaining term in Eq. (14.27) at 7=0Kis

YES = Ny D (X~ X,z (14.28a)
J

Note that this is the same as Eq. (14.1). Under this condition, when both planes i
and (i+)) are in the same phase, (X; - X;,;)* = 0 and, when i is in the o phase and
plane (i+j) is in the B phase, (X; — X;,;)* = 1. Thus Eq. (14.28a) reduces to

Y = Nymaye 2. 2 (14.28b)
J

and y$S at 0 K is simply proportional to the number of broken bonds when the in-
terphase boundary is ruptured exactly along the interface. This is similar to the
Becker model in the limit of no solubility, which yields results that are similar to the
treatment of the surface energy in Part II and we therefore expect a similar
anisotropy of the coherent interphase boundary energy as a function of orientation.
To investigate the orientation dependence of ySS and the resulting concentra-
tion profile, it is necessary to evaluate Ny, z and z; as a function of orientation
for a particular value of e. This was performed for an f.c.c. crystal system using a
regular solution model with € = 0.16743T,, where the calculations can be confined
to within the unit stereographic triangle due to symmetry, as for the previous sol-
id—vapor surfaces. The procedure for evaluating these quantities is similar to that
discussed with regard to Eq. (3.20) and the reader is referred to the original refer-
ences for further details [105,107].
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Figure 14.7 shows the concentration profiles in one phase at three tempera-
tures for the (100), (110) and (111) planes only. The profiles for the other half of
these interfaces is an inverted mirror image of those shown in this figure because of
the symmetry relation across the interface (refer to Fig. 14.3). The profiles are given
in units of the lattice parameter of the f.c.c. phase a . Note that the concentration
profile is controlled solely by 7/T, and is independent of boundary orientation
above about 0.67/T,, in agreement with the previous results of Cahn and Hilliard
[10]. This situations applies at a relatively high value of 7/T, when the concentration
gradient is small across the boundary zone. Comparing the curves for 0.57/T in
Figure 14.7 shows that there is some difference between the two treatments at
0.57/T, when the concentration gradient is relatively steep. The concentration pro-
files in Figure 14.7 would continue to flatten as the temperature is raised until 7.
where the plot would appear as a horizontal line at X; = 0.5, as in Figure 3.3.

At T= 0K, Eq. (14.28) yields ySS directly by summing over the planes j. At
higher temperatures, Eq. (14.26) must be solved for X; for various (hk/) planes and
the results incorporated into Eq. (14.27). The resulting calculations for 53
shown in the form of contour plots in the stereographic triangle in Figure 14.8 for
T/T, = 0, 0.25 and 0.5, respectively. These results are normalized to unity at (100)
and the result for 0 K in Figure 14.8a is similar to that for the surface energy of 2
pure f.c.c. crystal shown previously in Figure 3.10. As T increases in Figures 14.8b
and c, v3S is not a simple function of the number of bonds across the interface and
the energy contours do not consist of spheres centered about (210) as in Figure
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Figure 14.7. Half concentration profile normal to the o~ boundary. Filled circles represent
(100), open circles (111), open triangles (110) and filled triangles are from the Cahn-Hilliard
(continuum) analysis. Reprinted with permission from [105] by Elsevier Science Ltd., Oxford,
England.
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14.8a. In addition, the degree of anisotropy decreases with temperature from zp-
proximately 1.30 at 0 K, 1.14 at 0.25T,, 1.03 at 0.57, and to less than 1.006 ==
0.75T, (not shown). These results are similar to those for the surface energy of cop-
per versus temperature shown in Figure 3.11 and for lead in Figure 3.16. Such =
small anisotropy at 0.757, indicates that, at higher temperatures, y5S is effectively
orientation independent. Note that a cusp exists at (111) for all of the temperatures
investigated, and that the maximum energy moves from (210) toward (100) such
that the maximum occurs at (100) at and above 0.57.. This is an unexpected result.
because most experimental studies of the surface energy show that the maximum
surface energy is located at approximately the center of the unit triangle.

Lee and Aaronson [105] have shown that the discrete lattice plane formalism=
can be used to derive the regular solution version of the Cahn—Hilliard (CH) contin-
uum equation for y$S and they compare the CH theory (curve c), discrete lattice
plane (DLP) model (curves a and b) and Becker theory (curve d) in Figure 14.9 for
the (111) and (100) interfaces. Above about 0.77,, the CH and DLP theories con-

o) ! ! ! !
(o] 0.2 0.4 0.6 0.8 1.0

T/Te

Figure 14.9. Comparison of the values of y§S in an f.c.c. crystal. Curves (a) and (b) are for
(111) and (100) from the DLP model, curve (c) is from Eq. (14.16) and curve (d) is for Eq. (14.1).
Reprinted with permission from [105] by Elsevier Science Ltd., Oxford, England.
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verge, which supports the equivalency of these models as well as the isotropic na-
ture of ySS at high temperatures. Comparison of the CH and DLP diffuse interface
theories with Becker’s result for an abrupt (100) interface shows that a significant
reduction in surface energy occurs as an interface becomes diffuse and, therefore,
that Becker’s result is only valid for T'< 0.2T,.

Lee and Aaronson [105] also compared the contributions of the two compo-
nents to the interfacial free energy in Eq. (14.27) as a function of temperature. The
two components in Eq. (14.27) consist of () the first and last terms, which repre-
sent the free-energy difference between the homogeneous metastable solution with
solute concentration X; and the equilibrium homogeneous solution of concentration
X,, and (b) the middle term, which is the free-energy change associated with the
concentration difference between adjacent parallel planes in the interfacial region.
For a solid solution with a positive heat of mixing as required to form a miscibility
gap, both terms are always positive. Figure 14.10 shows the contributions of these
two terms to the interfacial energy for a (111) interface as a function of temperature,
where the first and last terms in Eq. (14.27) are labeled 2AG; and the middle term
is identified as 3(AX;_,)2 The free energy increase from segregation to the interface
is maximum at 0.57/T,, whereas that associated with the concentration difference
decreases steadily with temperature. The two contributions are nearly equal above

- 8z, .

roa )';(Ax,._.)’

0 L 1 1
(0] 0.2 0.4 0.6 0.8 1.0

TITe

Figure 14.10. Comparison of the two contributions to S8 for the (111) f.c.c. interface.
Reprinted with permission from [105] by Elsevier Science Ltd., Oxford, England.
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approximately 0.67/T, and the sum of the two curves in Figure 14.10 gives curve (a)
in Figure 14.9.

14.3. ROUGHENING AND PHASE TRANSFORMATIONS AT
INTERPHASE BOUNDARIES

Heterophase interfaces roughen and facet just like the solid surfaces (Section 4.2)
and homophase interfaces (Section 13.2.6) discussed previously. It is possible to use
the Wulff construction discussed for solid surfaces in Section 3.5 to construct the
equilibrium shapes of coherent precipitates in solids, such as the G.P. zone in Figure
12.3. Figure 14.11 shows the equilibrium shapes of a coherent f.c.c. precipitate as 2
function of temperature obtained from the <y plots in Figure 14.8. At 0 K the shape
determined from the Wulff construction is seen to be entirely faceted, as shown by
the two-dimensional Wulff construction in Figure 14.11a and the faceted particle in
Figure 14.11b. The larger facets are {111} and the smaller ones are {100}. At
0.257, in Figure 4.63c, the Wulff shape becomes a faceted sphere, with the {111}
facets still larger than {100}. Increasing the temperature to 0.57, is seen to com-

d

Figure 14.11. (a) (110) section of the polar y plot for an f.c.c. crystal at 0 K and the corre-
sponding Wulff construction. The corresponding three-dimensional precipitate shapes at 0 K,
0.25T, and 0.5T are shown in (b), (c) and (d), respectively. From [108].

14,

pletely
shown 1
A
perature
14.13. F
160°C 2
pear mo
figure e
damentsz
measure
<110>t
sults on
show the
solution
{100} a
faceting
These re
that wer
[109].
Tt
boundar
only a fe
interfaci
minum |
germani
form as
along a
parallel t
Fi;
tion of te
the germ
particle
cooling,
was perfi
was cycl
changed
feature d
solution
formatior
cussed fi
summary
temperat
lar-soluti
for comp
Iti



14.3. ROUGHENING AND PHASE TRANSFORMATIONS AT INTERPHASE BOUNDARIES 395

-10 grves carve (2 pletely eliminate the {100} facets and considerably reduce the {111} facets as

shown in Figure 14.11d. The shape at 0.757,, (not shown) is essentially spherical.
An example of the roughening of silver-rich G.P. zones as a function of tem-
perature in the aluminum-silver system (Figure 12.3) is shown in Figures 14.12 and
P AT 14.13. Figure 14.12 shows <110> bright-field TEM images of two samples aged at
160°C and 350°C to form well-developed G.P. zones. Note that the G.P. zones ap-

pear more angular in the sample aged at 160°C. The diffraction pattern shown in the

faces (Section 42 figure exhibits diffuse scattering in the {111} and {100} directions around the fun-
It is possible to === damental spots because of the {111} and {100} facets. Figure 14.13a shows the
S to construct 3= ‘ measurement technique used to determine the percentage of faceting from the
G-P. zone in Figers : <110> projection of the G.P. zones, and Figure 14.13b shows the experimental re-
».c. precipitate 25 2 : sults on faceting obtained as a function of aging temperature. These data clearly
L At 0K the shape show the strong temperature dependence of faceting as calculated from the regular-
ceted, as shown ¥ solution DLP model in Figure 14.11. The percentage of {111} facets is greater than
faceted particle = {100} and persists to higher temperatures, as predicted from the calculations. Some
nes are {100}. Az faceting of the G.P. zones remained up to the solvus, which is just above 350°C.
re, with the {111 These results were in qualitative agreement with regular solution DLP calculations
T, is seen to com- that were performed using thermodynamic data for the aluminum-silver system
[109].

The temperature dependence of faceting shown for the coherent interphase
boundary above also occurs for semicoherent and incoherent interfaces, although
only a few examples have been documented so far. A second example of solid—solid
interfacial roughening with temperature is shown for germanium precipitates in alu-
minum in Figure 14.14. In contrast to the aluminum-silver G.P. zones above, the
germanium precipitates have incoherent interfaces, as shown in Figure 12.6, but
form as highly faceted octahedral particles at room temperature. When viewed
along a <110> direction in the TEM the octahedra project as squares with edges
parallel to {110}, as in Figure 14.14a.

Figures 14.14a—f show the shape evolution of an octahedral particle as a func-
tion of temperature studied by in situ thermal cycling in a high-voltage TEM. When
the germanium particle was heated to a high temperature as in Figure 14.14b, the
particle gradually rounded and obtained a nearly spherical shape. Upon subsequent
cooling, the precipitate regained its octahedral shape as in Figure 14.14c. This cycle
\ ‘ was performed many times (Figs. 14.14d and e). It was also found that if the particle
)

was cycled just a few degrees to either side of the roughening temperature, it
changed shape from an octahedron to a sphere without changing its volume. This
feature discounted the possibility that the particle was becoming rounded from dis-

//’— solution and demonstrated that it was displaying a real faceting-roughening trans- |
' formation. This observation is very similar to the same phenomena previously dis- |
cussed for solid—vapor (Section 4.2) and solid-liquid (Section 9.4) interfaces. In |

summary, solid-solid interfaces display faceting and roughening as a function of \

‘ temperature, and this behavior can be predicted for coherent interfaces using a regu- \

= 0 K and the corre- lar-solution DLP model, which is essentially a bond counting model that accounts
ipitate shapes at 0 K, for compositionally wrong bonds across the interface.

It is possible to imagine a number of other types of phase transformations that
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Figure 14.14. (a)~(e) Bright-field TEM images of a germanium particle in aluminum recorges
during in situ temperature cycling between about 320° and 380°C showing reversible transfor-
mation between octahedral and spherical shapes. The temperature cycle is shown in (f). From
[110].

could occur at solid—solid interfaces, but only a few examples have been report=s
experimentally. To illustrate some additional possibilities, Figure 14.15 shows a seg-
ment of a copper-silver interphase boundary, like that in Figure 12.5, in which the
misfit dislocations have dissociated to form small microtwins in the interface ané
also stacking faults out of the boundary. The mechanisms and energetics of these -
terphase boundary transformations are not fully understood but they clearly occur
in actual interfaces.
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Figure 14.15. HRTEM image of a {111} copper-silver interphase boundary where misfit dislocations have dissociated to form (a) microtwins at the

interface (outlined) and (b) stacking faults (arrows). From [111].
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14.4. ANTIPHASE BOUNDARIES

An antiphase boundary (APB) separates two domains of the same ordered phzss
[112,113]. It results from symmetry breaking that occurs during ordering process=s.
which can start at different locations on a disordered lattice. An APB forms wihes
two such regions contact so that they display wrong compositional bonds across
interface, as illustrated in Figure 14.16. Dislocations with Burgers vectors that a=
not translation vectors of the ordered superlattice can also create APBs as they maws
through an ordered phase [112].

Antiphase boundaries are quite similar to the coherent interphase bounda=es
that were discussed in Section 14.2. We can readily calculate the interfacial ensmzs
associated with an APB using a nearest-neighbor broken-bond model. In addizas
we can envision the temperature dependence of the APB width by referring to @
CH/DLP treatments for coherent interphase boundaries in the previous section zm:
the order parameter introduced in Section 2.6. We examine APBs in an ordsr=t
f.c.c. structure in some detail to illustrate these features. This is followed by severz
examples of the behavior of APBs in f.c.c. alloy systems.

The L1, structure, or CusAu-type superlattice, is shown in Figure 14.17
The disordered f.c.c. structure transforms to a lower symmetry on ordering, = =
simple cubic structure with four atoms or sublattices per primitive lattice point. A=
A atom occupies one sublattice site in the ordered structure and B atoms occuzs
the other three sites. Thus, four types of ordered domains can occur on the four
sublattices in a crystal: type I with 4 at 0, 0, 0; type Il with 4 at 0, 1/2, 1/2; tvpe
III with 4 at 1/2, 0, 1/2; and type IV with 4 at 1/2, 1/2, 0. An APB is produced ==
an antiphase vector w;, which brings about the displacement of one atomic specizs
from one sublattice to another. The antiphase vectors correspond to perfect disla-
cation Burgers vectors in the disordered crystal and are of the type a/2<110> ==
illustrated in Figure 14.17.
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Figure 14.16. Formation of an APB when ordered regions in which A (open circles) and 2
(filled circles) atoms occupying different sublattices grow together. (a) Nucleation of ordersc
domains on different sublattices, (b) contact of domains and (c) the resulting APB (dashec
line). From [114] reprinted with the permission of Cambridge University Press.
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»

x

Figure 14.17. Unit cell of the CusAu superlattice. The open and filled circles represent A and
B atoms, respectively. The vectors show equivalent ways of moving an A atom from a type |
site to type II, Il and IV sites. From [114] reprinted with the permission of Cambridge Universi-
ty Press.

An antiphase boundary can be sufficiently described by u; and the normal n
to the boundary plane. If u; lies in the boundary plane, then

w-n=hutkv+iw=0, (14.29a)

where [uvw] are the components of the antiphase vector u, and (hk/) are the Miller
indices denoting the plane of the APB [115]. In this case, the APB is produced by a
lattice translation in the boundary plane and there is no net increase or decrease in
the number of 4 and B atoms at the interface. This type of APB is called a conserva-
tive or type 1 APB and a relatively small antiphase boundary energy Yap, is expect-
ed for this type of interface. In the second case,

u,-n#0 (14.29b)

and a nonconservative or type 2 APB boundary results. In this case, it is necessary
to remove either a plane of 4 or B atoms to form the APB. This leads to an excess or
deficit of A—4 or B—B bonds at the interface and a higher energy is expected for this
type of APB. Figure 14.17 shows the four sublattices (I-IV) for the L1, structure
with the three associated vectors u; = a /2[110], a /2[101] and a /2[011]. For an
APB with n = [001], a conservative (type 1) APB is produced by u, and the others
are nonconservative (type 2).

The antiphase boundary energy v, can be estimated as a function of the ori-
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entation of the APB (i.e., of the boundary normal n, using a nearest-neighbor bro-
ken-bond model, similar to the previous cases of solid—vapor and coherent int==-
phase-boundary interfaces). This provides a reasonable estimate of the APB energs
at 0 K, because the contribution of higher-order neighbors to the energy is less thas
10%. A complete derivation of the equations for APBs in several different f.c.c. ant
b.c.c. ordered structures is provided by Flinn [115] and Marcinkowski [112]. The
derivations are similar to those used in Egs. (3.20) and (14.22), and we only summz-
rize the end result for the case of the L1, structure in Figure 14.17 here.

In the case of an L1, structure with the pair exchange energy € in Eq. (2.15.
the APB energy for u, = a/2[110] is given as

yaop = 26hRa2(h2 + 2 + [2)112, (14.30)
P!

where Q is the long-range order parameter (Egs. 2.29 and 2.30), a is the lattice parz-
meter, and we assume that 4 = k. For a conservative n = [001] APB with £ = 1, v
= 0, although the APB energy remains finite when next nearest-neighbor interac-
tions are taken into account. The orientation dependence of v,y for the L1, strue-
ture is shown in Figure 14.18 by lines of constant energy in a stereographic projec-
tion of the possible n. There is a minimum at n = [001], maxima at [100] and [010.
with saddle points at [110] and [110].

According to Figure 14.18, APBs in L1, structures should lie parallel to the
cube planes; this has been observed experimentally in alloys where nearest-neigh-
bor bonding interactions are the dominant component to the APB energy. For exam-
ple, Figure 14.19 shows conventional and high-resolution TEM images of APBs in
Cu,Au. The viewing direction is [001] and the conservative APBs labeled 2 and 3 in
Figure 14.19a clearly lie along the cube planes. The white spots in the HRTEM im-
age in Figure 14.19b are the projections of the atomic columns in the structure and
the a/2[110] displacement of the white spots across the APBs is directly visible in
the image.

More accurate expressions for the antiphase boundary energy that account for
the entropy contribution and the presence of extra 4 or B atoms at nonconservative
APBs have been obtained by Kikuchi and Cahn [113] and Loiseau et al. [116]. Az
low temperatures, the entropic contribution is small but it can have a substantial ef-
fect on the APB profile at temperatures approaching 7. This effect is illustrated for
first-order and second-order ordering reactions in copper—palladium and iron-alu-
minum alloys, respectively, below [116].

The long-range order parameter & as a function of temperature for a second-
order order—disorder transformation was illustrated in Figure 2.12, where it was
seen that disordering is a cooperative phenomenon that progresses rapidly as T ap-
proaches T,. The degree of order across an APB as a function of temperature can be
represented schematically by an order-parameter profile, as shown in Figure 14.20.
At 0 K in Figure 14.20a, the order parameter £ jumps discontinuously from -1 to
+1 across the APB, similar to the composition profile across a coherent a—f3 inter-
phase boundary at 0 K in Figure 14.1. As the temperature is raised, the long-range
order parameter decreases, and the APB obtains a finite width L,,. The order-para-
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100

Figure 14.18. Lines of constant APB energy created by u, = a/2[110] in Cu,Au as a function
of the plane normal [hki]. From [114] reprinted with the permission of Cambridge University
Press.

meter profile across the APB then looks like 7 in Figure 14.20b. This profile has
the same shape as the composition profile for the coherent a—f interface in Figures
14.3 and 14.7. The long-range order parameter continues to decrease and the APB
width continues to increase with temperature, that is, 7, in Figure 14.20b, until at
T, 8 = 0, L,y, — o and the APB vanishes.

This process is illustrated experimentally for the DO; — B2 ordering trans-
formation in an iron-27% aluminum alloy in Figure 14.21. In this system, T, =
547°C, and the appearance of the APB as a function of temperature was studied in
situ in the TEM using a heating holder. The APB in the DO, structure is dark and
the ordered domains (+R and —) are bright in Figure 14.21a, which is 20°C below
T.. As the temperature is raised in Figures 14.21b—d, the APB width increases and
fluctuations in the contrast of the ordered domains also increase. Just below T in
Figure 14.21d, the image contrast in the domains is beginning to break up and the
APB is barely visible. This phenomenon continued until T,, where the APB van-
ished. A log—log plot of the APB width as a function of (T, — T) in this case indicat-
ed that L,,, obeyed a power law with an exponent between approximately 0.5 and
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Figure 14.19. (a) (110) dark-field TEM image of APBs in CuzAu projected along [001]. The
numbers 2 and 3 indicate APBs with antiphase vectors Uz and u,. Examples of nonconservz-
tive APBs are indicated by arrows. (b) [001] HRTEM image showing conservative APBs alorg
(100) and (010) joining at four-point and triple-point junctions (arrows). From [116].
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Figure 14.20. (a,b) Evolution of the order-parameter profile of an APB for a second-order
transformation with T, < T,. From [116].

0.64, similar to the coherent interface in Eq. (14.18) and close to the theoretically
predicted value of 0.63 [116,117].

The behavior of an APB in the case of a first-order order—disorder transfor- |
mation (Fig. 2.13) is more complicated than for a second-order transformation, but
it can be qualitatively described for L1, phase as follows [113,116]. It is possible to
sketch an order-parameter profile across an APB as a function of temperature for a
first-order reaction, as shown in Figure 14.22. At 0 K in Figure 14.22a, the order pa- ‘
rameter changes abruptly from its value in one domain to that in the adjacent do- ‘

ted along [001]. The
Jles of nonconserva-
ervative APBs along
»m [116].

Figure 14.21. (a-d) 1/2(111) dark-field TEM images of an APB in the DO, superlattice as a
function of temperature approaching T,. From [116].

M
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Figure 14.22. (a,b) Evolution of the order-parameter profile of an APB for a first-order trams-
formation. From [116].

main across the APB, similarly to Figure 14.20a. As the temperature is increased =
slightly below T, the APB progressively splits into two new interphase boundare=s
(IPB) of thickness Ly, bounding a region of width L,, where the order parameter =
zero, as illustrated in Figure 14.22b. In essence, the APB has become perfectly we=
by the disordered f.c.c. phase and the ordered and disordered phases coexist. As 7.
is approached, L;,, remains finite but L, diverges so that the disordered area be-
comes large compared to the domain size.

Evidence for this phenomenon has been shown by TEM in several L1, alloys.
An example in a copper—17% palladium alloy is shown in Figure 14.23, where T =
506.6°C. In the dark-field TEM images in Figures 14.23a and b, the APBs are vis--
ble as gray bands in the image. As the temperature is increased and disorder sets =
at the APBs, the APB contrast is replaced by that of a thin, dark disordered film =
the boundary (Figs. 14.23c and d); this disorder has been revealed by HRTEM
[116]. Between 505.6°C and 506.6°C, the width L, rapidly expands, as evident =
Figures 14.23e and f, until the entire alloy is disordered at 7. In contrast to the sec-
ond-order reaction, the first-order reaction involves nucleation and growth of ths
disordered phase at the APB and & evolves accordingly. The evolution of the APE
width L, as a function of temperature as T — T, has been determined, and it resem-
bles the graph of the order parameter shown in Figure 2.13.

Thus, we see that the temperature dependence of APBs in a second-order or-
der—disorder reaction is similar to that of coherent interphase and solid—vapor intez-
faces, whereas the first-order reaction behaves somewhat differently because it in-
volves nucleation and growth. In the second-order reaction, the APB roughens and
eventually becomes indistinguishable from the adjacent phases, just like the previ-
ous coherent interfaces. In both cases, the APB width increases with temperature.

14.5. SEMICOHERENT INTERPHASE BOUNDARIES

Coherent interphase boundaries form in solids when the lattice parameters of the
a and (B phases are similar, and there is only a small amount of misfit across the
interface. This situation frequently occurs with small or plate-shaped precipitates

herent int
considere
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Figure 14.23. (110) dark-field TEM images in copper-17% palladium alloy showing the evolu- ;‘
tion of the APB contrast as a function of temperature: (a) 498.60°C, (b) 502.6°C, (c) 503.85°C,
(d) 505.2°C, (e) 506.1°C and (f) 506.55°C. From [116].

and lattice-matched semiconductors, for example, and two examples of coherent
interphase boundaries were shown previously in Figures 12.3 and 12.4. In many
I other cases, there is sufficient lattice mismatch that coherent interfaces relax to an '
‘ unstrained condition with an array of misfit dislocations at the interface. This type
‘ of interface was illustrated schematically for the case of a thin film on a semiinfi- |
| nite substrate in Figure 7.7 and an experimental HRTEM image of a semicoherent 1

It interface in the copper-silver (f.c.c.—f.c.c.) system was shown previously in Figure
1 125,
I E

When an interface relaxes and acquires a series of misfit dislocations, it is re-
| ferred to as a semicoherent (discommensurate) interface. The energy of a semico-
‘ herent interface between two phases o and B, which differ in composition, can be
considered to contain two parts, one associated with the structural defects at the in-
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terface and the other due to the unfavorable compositional bonds across the inter-
face. In the previous section on coherent interphase boundaries (Section 14.2), w=
discussed several procedures that were developed to calculate the interfacial energy
from compositional differences across an interface. In this section, we examine =
treatment that was developed to quantify the elastic strain energy associated with =
semicoherent interface.

Turnbull [118] suggested that when the misfit is small, it is reasonable to as-
sume that the interfacial energy of a semicoherent interface v S$ can be determined
by adding the compositional -y 35 and structural y$S (elastic strain) components to-
gether to obtain the total interfacial energy. In equation form this can be expressec
as

Yo =v5 +95. (14.31)

We begin this section by determining the structural component of the inter-
phase boundary energy. We then combine this with the compositional component 1o
obtain the total interphase boundary energy of a semicoherent interface according
to Eq. (14.31). We also compare the relative magnitudes of the compositional and
structural components to the interphase boundary energy in an f.c.c.—f.c.c. system
as a function of misfit and temperature.

14.5.1. Geometry of Semicoherent Interfaces

In Eq. (4.21), we defined the misfit § between a substrate and a thin film as & =
(a;— ay)/a,, where a¢and ag represented the lattice parameters of the film and sub-
strate, respectively. In this section, we define the same misfit, but we use the sub-
scripts 1 and 2 to indicate the lattice parameters of the a and B phases, respectively,
which are both assumed to be semiinfinite in extent except when noted otherwise.
For simplicity, we will let the o and B phases be simple cubic crystals aligned
across the interface and differing only in lattice parameter, as illustrated in Figure
14.24. We then follow the approach of Frank and van der Merwe [119,120] in ana-
lyzing the resulting interfacial structure and energy, as summarized in a review by
Aaronson et al. [121].

We are interested in the situation where there is relatively strong bonding
across the a—[3 interface so that relaxation of the interface occurs and the misfit is
localized at dislocations in the interface, as illustrated in Figure 14.24. In between
the dislocations, the planes in the two lattices match perfectly. Designating the lat-
tice parameter of the a phase as a, and that of the B phase as a,, the repeat distance
Dj between the dislocations (or alternatively, between the regions of perfect match-
ing) is given by

Dy =na, =(n+ )a,, (14.32)

where n represents an integral number of spacings in either lattice. Because the in-
terfacial dislocations are derived from the difference in lattice parameters across the
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Figure 14.24. Atomic model of a semicoherent interface in a simple cubic crystal where ag >
a,. Reprinted from [127] with kind permission from Elsevier Science S.A., Lausanne, Switzer-

land.

interface they are commonly called misfit dislocations. Unlike isolated dislocations
which increase the energy of a single-phase material, these dislocations are an ener-

gy-reducing feature of the structure.
It is sometimes convenient to quantify the misfit between two lattices in

terms of a reference lattice that is an average of the two lattices rather than in terms
of one or the other of the two lattices as in Egs. (4.21) or (14.32). If we use an aver-
age reference lattice, its lattice parameter is given by

i (14.33)
2
and with this, Eq. (14.32) becomes
Dy=(n+1/2)a’. (14.34)
Noting that
n= Ia_lg—z_aﬁ (1435)

and substituting into Eq. (14.33) leads to the following expression for the repeat dis-
tance,

_eira) (14.36)

Ds = ;
4, -ay)




410 STRUCTURE AND ENERGY OF HETEROPHASE INTERFACES

The misfit & between the o and B lattices can then be defined by the ratio of the ==
erence lattice parameter to the repeat distance, or 8 = a’/Ds. Thus,

_2a-a) _a-a
a; +a, a’

(1437

and the misfit is given as the ratio of the difference in the a and B lattice parames==
to the parameter of the reference lattice. Note that the lattice parameters are given =
units of length (nanometers) so that 3 is dimensionless. Rewriting Eq. (14.36) ==
the basis of Eq. (14.37) gives the misfit dislocation spacing at the interphase boumz-

ary as
Dy=a'/d = b/, (1438

where b is the magnitude of the edge component of the Burgers vector b of the mus-
fit dislocation. Physically, this equation is analogous to Eq. (13.2b) developed for =
grain boundary, with the rotation 6 replaced by the misfit 8.

14.5.2. Energy of Semicoherent Interfaces

The energy of a semicoherent interface was first analyzed by Frank and van de
Merwe [119,120]. Their treatment yields an equation that is physically analogous =
Eq. (7.8), but it is more sophisticated and contains higher-order terms. In the trez=
ment of Frank and van der Merwe, misfit is considered in only one direction as =
Figure 14.24 and atomic relaxation is permitted in the vicinity of the misfit dislocs-
tions. The interaction of the atoms across the interphase boundary is assumed to oc-
cur according to a sinusoidal force law and the interaction within a given phase =
treated on the basis of an elastic continuum. Their approach yields the following e~
pression [122] for +y $5, the misfit dislocation energy at the a—B boundary:

S = pa'/am{1 + A — (1 + A?)12
- Aln2A(1 + A%)2 ~2A7]},

A =2m3(Cy/1) (14.39%

VCs=[(1 = ve)/ue] +[(1 - vg) gl (14.3%)

and u is the shear modulus at the interface, u, and g are the shear moduli and »,
and v, are Poisson’s ratios in the a and B phases, respectively. The Cg term accounts
for elastic interactions within each crystal whereas u accounts for such interactions
across the a—f3 interface. When these individual characteristics are suppressed by
letting v, = vg = 1/3 and p, = pg = u, then A = 37d/2 and v $S is only a function of

da ¥ 0 8 e

H B H B ™ B 38 B maow

Unibn b pamam® s it wien



iy the ratio of the ref-
s,

(14.37)

[ B lattice parameters
rameters are given in
iting Eq. (14.36) on
he interphase bound-

(14.38)

i vector b of the mis-
1.2b) developed for a

7 Frank and van der
rsically analogous to
r terms. In the treat-
y one direction as in
>f the misfit disloca-
Iry is assumed to oc-
hin a given phase is
lds the following ex-
boundary:

(14.39a)

(14.39b)
(14.39¢)

shear moduli and v,
he Cg term accounts
for such interactions
s are suppressed by
is only a function of

Units of 13/472 per unit orea

14.5. SEMICOHERENT INTERPHASE BOUNDARIES 411

w and 8. The solid curve in Figure 14.25a shows the variation of -y S with 3 under
these conditions. It is particularly important to note the rapid increase in v §S with 3
when 8 < 0.01 and the small dependence of y $S on 3 at larger misfits. Also note the
energy reaches a maximum of pa’/4m?, or the first term in Eq. (14.39a). Van der
Merwe [122] has shown that at least 98% of the total elastic strain energy is stored
within the region x < Dg/2, where x is the distance normal to the interface.

It is common to find misfit in two mutually perpendicular directions as in the
{100} interphase boundary in semiconductor crystals, and also in three directions
120 degrees apart as between the close-packed {111} and (0001) planes of cubic and
hexagonal crystals, for example. Thus it is possible to have interfacial dislocation net-
works such as those illustrated in Figure 14.26. When there are two perpendicular sets
of parallel edge dislocations (Fig. 14.26b) each having an energy expressed by Eq.
(14.39), to first approximation the interaction energy between the two sets of dislo-
cations can be neglected and the energy of the two sets of dislocations can be added
to give the structural part of the interfacial energy as 2+y $5. The example of three sets
of dislocations in Figure 14.26¢ is more complicated since the Burgers vectors have
mutual components and the interaction energy is not negligible.

It is also important to consider the effects of the other factors such as the elas-
tic moduli on the interfacial energy -y $S. The ratio p,/pug is referred to as the rela-

(a) (b
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Figure 14.25. Misfit dependence of the dislocation interphase boundary energy v $S as influ-
enced by (a) contributions of the misfit potential and elastic energy, (b) the relative hardness
(1o/ 1) and interfacial bonding strength (u/pg), (€) the relative thickness of one component,
and (d) the relative elastic strain accommodation. From [121,122].
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Figure 14.26. Misfit dislocation network for (a) one set of dislocations as in Figure 14.24, &
two sets of perpendicular dislocations, and (c) three sets of dislocations at 120°. Reprimt=s
from [123] with kind permission from Elsevier Science-NL, Amsterdam, The Netherlands.

tive hardness (or strength) of the two crystals and the ratio u/pg is taken to repr=-
sent the strength of the interfacial bond. Figure 14.25b shows that, for a constz=
value of the strengths of the phases (uq/pg), increasing the strength of the interfe-
cial bond (u/ug) by a factor of ten sharply decreases the initial slope of the y 5S ver-
sus & curve and greatly extends the range over which y $S increases appreciably witt
8. In comparison, for a constant value of w/ug, increasing p,/pg produces an m-
crease in the curve and a decrease in the range where y$S depends on 3.
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Another situation that is important to consider, is when the thickness L of one
of the phases, say the a phase, is less than the interdislocation spacing Dj. This situ-
ation is encountered in thin films, as discussed in Section 7.2, and also applies to
small misfitting precipitates in a matrix. Figure 14.25c shows that when the o and B
phases differ only in lattice parameter, 'y S8 is less in a monatomic film that in one of
semiinfinite thickness only at small values of 8. When L/a = 20 the difference be-
comes negligible throughout the range of misfit.

When both L and § are sufficiently small, a fully coherent interface has a low-
er energy than one with an equilibrium arrangement of misfit dislocations. A quali-
tative argument upon which this conclusion is based is illustrated in Figure 14.25d.
The energy of a fully coherent interface increases proportionally to 8% (Eq. 7.8) and,
therefore, increases slowly at small misfits, whereas that of a misfit dislocation
boundary exhibits a rapid initial rise (Fig. 14.252). Hence, a misfit dislocation inter-
face does not have a lower energy until a critical value of the misfit is exceeded.
Quantitatively, the energy required to deform a thin film homogeneously in one di-
rection is derived from Eq. (7.8) as

_ Ha(1-v,)L8"

E
L (1-2v)

(14.40)

where 8 = (a, — ay)/a, = 3 for small values of misfit, a, is the lattice parameter of
the thin film and a is the lattice parameter of the substrate. The critical value of the
misfit 8. occurs when E,, in Eq. (14.40) is equal to v §S in Eq. (14.39a). Letting v,
= vg = v and considering the misfit to be sufficiently small that A2 = 0 yields the
relationship

In(@mdipy) . 2m(1-v)*(1+ pg/pa)lde _
(1 =v)(1 + pp/sa) (1-2v)a,

0. (1441

Ifv=1/3 and p, = pg = u, the thickness of a phase corresponding to 8. is

_ 3,1 -1In (378)]
. 16w,

(14.42)

Figure 14.27 shows the dependence of 8. on the ratio L/a, when p, = ug = § and v
= 0.3. This plot shows that it is possible to maintain full coherency of interfaces for
significant thicknesses only for small values of the misfit (i.e., when 3. is on the or-
der of 1% or less). Since the generation of misfit dislocations requires an activation
energy, the fully coherent state is bound to be retained in metastable equilibrium un-
til (w/2)3,. Note that the value of L, depends on the ratios of the elastic moduli in
Eq. (14.41). Thus, for a given value of L/a,, the value of the critical misfit 8. in-
creases with the bonding strength (u/ug) for a given level of relative hardness
(mo/mp) and with decreasing relative hardness for a given level of bond strength,
both in accord with qualitative expectation.

Examples abound of misfit dislocations at heterophase interfaces, and they
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Figure 14.27. Dependence of the critical misfit 8 on the ratio of the thickness of one phas= _
to the interatomic spacing of the phase ay. From [121,122].

have been compiled in several reviews [121,124,125]. Here we show just one exam-
ple of a typical interphase boundary dislocation structure to illustrate its appearance
in the TEM. Figure 14.28 shows the interfacial dislocation structure formed at the
interface between a chromium rod (dark) and the NiAl matrix (light) in a direction-
ally solidified Cr-NiAl eutectic alloy. Both phases in this system are cubic, and they
are in a parallel orientation relationship. The misfit is small and the spacing of the
interfacial dislocations with b = a<100> was found to be quite regular (Ds ~ 120
nm), as evident in the figure. It is often found that experimentally measured disloca-
tion spacings are greater than those expected from equilibrium elasticity calcula-
tions, and this has been attributed to the difficulty of nucleating misfit dislocations
at interfaces [121,122].

It is worth noting the similarity of Eq. (14.39a) with the Read-Shockley for-
mula for grain boundaries in Eq. (13.3). For well-separated dislocations and phases
with similar elastic moduli where u, = g = u, A reduces to A = ma’/Dg(1 — v).
Furthermore, for Dy >> a’, higher powers of A may be neglected, and, if the misfit &
is substituted for a'/Ds, then Eq. (14.39a) simplifies [127] to

SS — _/J,CI'S_ —1nd 4
© = =) (4o—1nd), (14.43)
where 4, is a dislocation core energy. If 8 is replaced by 0, the factor (1 —v) is re-
placed by unity, and a’ is replaced by b for a homophase system, Eq. (14.43) be-
comes the formula for a low-angle twist boundary with a rotation angle 6 (Eg.
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Figure 14.28. Bright-field TEM image illustrating a dislocation network in a directionally solid-
fied Cr-NiAl eutectic quenched from 1200°C. The network is rotated 45° with respect to the
rod axis. Reprinted with permission from [126] by Elsevier Science Ltd., Oxford, England.

13.3). Hence, the origin of the interfacial dislocation energies is similar in both ho-
mophase and heterophase interfaces.

14.5.3. Incoherent Interfaces

Figure 14.29 shews an incoherent (incommensurate) interphase boundary with an
interphase boundary energy y{S. It is different from the semicoherent interface in
Figure 14.24 in that the bonding across the interface is sufficiently poor that there
is no local relaxation of the misfit into dislocations at the interface. Instead, the
misfit is spread evenly across the entire interface and the two phases retain their
bulk structures up to the interfacial plane, where they terminate abruptly. This is
similar to the krypton—graphite interface shown previously in Figure 4.16b and-
this type of interface is expected to have a high interfacial energy and low
strength. An upper limit on (and fairly reasonable estimate of) y5S can be obtained
by adding the surface energies of the two crystallographic faces (hkl) of the o and
B phases. '
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Figure 14.29. Atomic model of an incoherent interface in a simple cubic crystal where o, > =
and there is very weak interaction across the interface. Reprinted from [127] with kind perme
sion from Elsevier Science S.A., Lausanne, Switzerland.

14.5.4. Comparison of the Compositional and Structural Components
of the Interphase Boundary Energy

In Sections 14.2 and 14.5.2, we developed procedures to calculate the CompoSitanm-
al and structural components of the interphase boundary energy for coherent am¢
semicoherent interfaces, respectively. As pointed out in Section 14.5 (Eq. 1431}
Turnbull [118] suggested that these two components could be added to obtain e
total interphase boundary energy of a semicoherent interface. This procedure mzs
been applied to a few interfaces [128-130]. In this section, we show the results Som
the most complete analysis of this type, which was performed for a semicoher=m
f.c.c.~f.c.c. interface using lattice parameters and elastic constants appropriate
copper as a function of temperature and assuming a symmetric regular solution wis
a critical temperature of 1200 K (corresponding to a regular solution constan: =
19.9 kJ/mole). The calculation is described in detail by Spanos [130].

The basic procedure employed in the study was the following. (a) The O-iz
tice method (Section 13.2.2) was used to determine the dislocation structure of e
interphase boundaries between two f.c.c. crystals of identical orientation but Wi
different lattice parameters as a function of boundary orientation. (b) The struct==
energy of these interfaces was determined by employing elastic energy calculations
for dislocation arrays due to Hirth and Lothe (HL) [39] and also according to e
van der Merwe analysis (Eq. 14.39) for the {100} interface. (c) The compositionz
component to the interphase boundary energy was calculated using the regular-so-
lution discrete lattice plane (DLP) model described in Section 1423 (Eq. 1427
and this was compared with the structural energy obtained for the same boundary ==
a function of temperature. (d) Polar v plots were developed for each of these ene=-
gies in order to compare their anisotropies as a function of temperature. (¢) A Wul®
construction (Section 3.5) was performed on each polar 7 plot for the purposs o
comparing the equilibrium shapes yielded by the structural and compositional ener-
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gies as a function of temperature. (f) The polar vy plots and the Wulff constructions
were evaluated for the sum of the structural and compositional interfacial energies.

Table 14.2 compares the magnitudes of the compositional interfacial energy
vSS with the structural energy <y §S for the DLP and HL methods of calculation for
the {100} 1cc]l{100}scc. and {111}¢cc[l{111} . interfaces as a function of reduced
temperature 7/T,. These data show that at relatively low misfits (0.2%) the composi-
tional contribution to the interfacial energy dominates, but that for higher values of
misfit (2.0%), the structural contribution y$S can be more than twice vy SS, With an
increase in temperature, there is a large decrease in the compositional part of the in-
terfacial energy, as in Figure 14.9, whereas the structural energy drops off much
more slowly. Thus, at higher temperatures, the compositional component should
provide a much smaller contribution to the total interfacial energy of a semicoherent
interface vy SS than the structural component. The structural energy is lowest for the
{100} interface, and the {111} interface has the lowest compositional interfacial
energy.

The temperature dependence of the anisotropy of the compositional compo-
nent of the energy for these interfaces was also found to be much greater than for
the structural part. This is illustrated by the {011} polar v plots for the composition-
al and structural parts of the interfacial energy shown in Figure 14.30. These plots
were constructed from 180 different values for y§$S. The absence of facets on the
two-dimensional Wulff construction of the compositional polar -y plot at 7/T, = 0.9
follows directly from the rapid decrease in the anisotropy of v 358 as T, is approached
[108]. In contrast, at the same temperature, facets are still present on the two-di-
mensional Wulff construction for v SS. Also, the bumpiness of the y$S plot is due to
the fact that rather small changes in orientation can result in quite different disloca-
tion configurations at the interface [130]. In these studies, the HL analysis for y5$S
was found to be more reliable at high values of misfit because it accounted for inter-
action of the misfit dislocations more rigorously than in the van der Merwe analysis.

Results from analysis of the {100}, .[[{100}¢. . interface are shown graphi-
cally in Figure 14.31 to illustrate the relative magnitudes of vSS, y$S and 5§ (Eq.
14.31) as a function of 7/T, for two levels of room temperature misfit ORT. The

Table 14.2. Comparison of the DLP model compositional energy [105] and HL [39]
structural energy for {100} 1{100}c.c. and {111}, . NI{111};c.. interfaces as a function
of reduced temperature T/T.; RT = room temperature

v 35S (3%7=0.2%) 38 (3%7=2.0%)
TIT, {100} (111} {100y {111} (100y (111}
0.25 161.9 144.9 45.5 473 2982 3181
0.50 1113 107.5 40.1 417 2659 2832
0.75 452 453 29.7 30.8 2072 2197
0.90 124 124 21.1 219 147.6 155.6

Source: From [130].
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Figure 14.30. Comparison of {011} sections through polar vy plots for v$S and y $S estimatsc
from the DLP model and HL analysis at (a,b) 7/T, = 0 and (c,d) 7/T, = 0.9. The plots were nor-
malized by the minimum value of the plot. From [130].

structural component is greater than the compositional component at all levels of
T/T, for 38T = 1%. On the other hand, at 8% = 0.2%, -y SS > v 55 for all values of 7/T.
less than about 0.82. It is important to note that yy SS depends on the temperature and
shape of the miscibility gap in the regular solution model, which can change appre-
ciably from one system to another, thus influencing the ratio vy 5/ $S. These results
suggest that y SS is most likely to influence the facets that form at interfaces at tem-
peratures below 0.257,, whereas at temperatures greater than 0.757, where there is
no compositional anisotropy, the structural part of the interfacial energy may lead to
interfaces that are still heavily faceted. At intermediate temperatures, both compo-
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nents contribute significantly to the equilibrium shape of the facets at heterophase _‘
S and v §S estimated interfaces.
2. The plots were nor-

\ 14.5.5. Atomistic Modeling of Semicoherent Interphase Boundaries
|

Several detailed calculational and experimental studies have been performed on the

aent at all levels of structure and energy of semicoherent interphase boundaries in metals [131,132].
or all values of 7/T The atomistic studies were performed on a number of low-index orientations be-
the temperature and tween two metals using EAM potentials, and the Monte Carlo method was em-

1 can change appre- ployed to include temperature in some calculations [132]. The predictions of the
5/v5S. These results EAM calculations at 0 K were confirmed experimentally using the rotating crystal-
it interfaces at tem- lite method [22,133]. In this technique, small metal crystals (~ 0.1 wm) deposited
75T, where there is ‘ on a single-crystal metal substrate are annealed until they rotate into their equilibri-
energy may lead to um orientation relationship. Some of the more important findings from these stud-

itures, both compo- ies are summarized below.
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Figure 14.32 shows a plot of the interfacial energy y§S versus rotation angle &
for a (001) twist interphase boundary between silver and nickel with a cube-on-cube
orientation relationship. This twist interphase boundary is similar to the twist graa=
boundary shown in Figure 13.10, except that the crystals on either side of the intz-
face are silver and nickel, and because silver and nickel have significantly differsas
lattice parameters (@, = 0.4086 nm and ay; = 0.3524 nm), there is an orthogons'
set of edge-type misfit dislocations present in the interface when 6 = 0. This initz
dislocation structure then transforms into a set of mixed dislocations with an =
creasing screw component as 6 increases. The elements silver and nickel have =
large positive enthalpy of mixing (Table 2.1) and should display very limited mixing
across the interface.

Several features are apparent from Figure 14.32. One is that the interfaciz’
energy varies with twist angle, similar to the grain boundaries shown in Figures
13.8 and 13.31. In addition, there is a deep energy minimum at 8 = 26.56° anc
several shallower minima at other orientations. The deep minimum at 6 = 26.56°
corresponds to a % = 5/4 coincidence boundary, as illustrated in Figure 14.33.
(The notation 5/4 is the ratio of the inverse density of coincident sites in crystais
1 and 2.) Thus, coincidence boundaries can occur at heterophase interfaces, sim:-
lar to grain boundaries, and these may be low-energy orientations. This feature =
further illustrated by the similarity of Figure 14.33 with Figure 13.11. It is also
important to notice that most of the interfacial energies of the silver-nickel (001}
twist interface lie between approximately 800 and 900 mJ/m? and are on the sam=
order of magnitude as the twist grain boundary energies in Figure 13.31. Thus

°

sy
Tt

[o ¢

¥s:5S (mJ/m?)
ﬂ
8

1 | | |
10 20 30 40

8 (deg)
Figure 14.32. Relaxed interfacial energies as a function of twist angle for a (001) semicoher-

ent interface between silver and nickel with a cube-on-cube orientation relationship. Reprintec
with permission from [131] by Elsevier Science Ltd., Oxford, England.
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a

(c) (d)

Figure 14.33. Unrelaxed structure for a S = 5/4 (001) twist interphase boundary between sil-
ver and nickel. (a) Unit cell of the nickel layer, (b) unit cell of the silver layer, (c) two-dimension-
al near coincidence structure with a 3.3% misfit between the crystals, and (d) exact coinci-
dence at the interface after uniform deformation to accommodate the misfit. Reprinted with
permission from [131] by Elsevier Science Ltd., Oxford, England.

these are fairly high-energy interfaces. Unlike the homophase twist grain bound-
aries, there is no energy minimum at 6 = 0°, because the interphase boundary is
still semicoherent.

Gao et al. [131] also examined the detailed atomic relaxations that occurred
at the silver—nickel interface as a function of twist angle and found that relaxation
oceurs in both the silver and nickel crystals. In particular, atoms located at coinci-
dence sites relaxed perpendicular to the boundary but not parallel to it. All other
atoms had components of relaxation both parallel and perpendicular to the bound-
ary. These relaxations gave rise to a corrugation of the atomic layers parallel to the
interface that extended four to five atomic planes into the crystals. Different degrees
of strain localization were observed for the silver and nickel layers because of the
different elastic properties of the metals. The misfit dislocation networks always
passed midway between the coincident points. The rotating crystallite experiments
also performed by these investigators confirmed the presence of a deep energy min-
imum at 6 = 26.56° in agreement with the interfacial energy calculations.

In a second set of calculations and experiments, Gao et al. [131] determined
the interfacial energies of other possible semicoherent interfaces and orientation re-
lationships between silver and nickel crystals. A summary of their results is given in
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Table 14.3. The most important features of these low-index interfaces are listed be-
low.

1. The lowest interfacial energy is found for the (111),,4/|(111)y; interface with
= 0° (i.e., with parallel close-packed atomic rows), and the second lowest o
curs for the (111),4/[(001)y; interface with parallel close-packed atomic rows.

. The interfaces with parallel close-packed atomic rows (i.e., with 6 = 0°) z=
always energetically favored except for the (111),4/[(110)y; interface.

. The interfaces formed by joining low-energy solid-vapor surfaces, for exam-
ple, the (111) planes, are associated with low interfacial energies.

. Inverting the crystals at the interface, for example, changing e
(111)g]l(001)y; interface to the (111)y;[|(001),, interface, changes the energs

These results are entirely consistent with the interfacial behavior discussed for ez
taxial films in Section 7.2 and grain boundaries in Section 13.2.4, further emphasiz-
ing the importance of nearest-neighbor bonding in determining the orientation relz-
tionships and interfacial energies at interfaces. Notice that the interfacial energy o
the (111),gl[(111)y; interface (417 mJ/m?) is approximately half that of the other i=-
terfaces. Crystallite rotation experiments performed for silver droplets on nick=
substrates confirmed the predictions of the EAM calculations in these orientations
shown in Table 14.3. The atomic relaxations at these interfaces are examined in d=-
tail by Gao et al. [131], and they are not discussed here.

Lastly, we mention EAM Monte Carlo calculations that were used to examime
the structure and properties of a semicoherent copper—silver (001) interphass
boundary with the crystals in a cube-on-cube orientation relationship [132]. This i=-
terface is interesting because copper and silver display mutual solid solubility wit
temperature, and, therefore, there should be some compositional mixing at the intzr-
face superimposed on the dislocation network necessary to accommodate misfit be-
tween the crystals. This is observed in the calculations, as illustrated in Figurs
14.34. In this figure, it can be seen that the width of the composition profile assoc:-
ated with the interface increases with increasing temperature in the range of 600 =
900 K, in accordance with the predictions of both the continuum and discrete lattice
plane models of coherent interfaces (Section 14.2). In contrast to the profile of =
perfectly coherent interface (Fig. 14.3), the composition profile of the semicohere=s

Table 14.3. Calculated interfacial energies of various low-index silver-nickel interfaces
Ag (001) Ag(110) Ag(111)

Ni 0° 90° 0° 90° 0° 90°

(001) 814 814 1124 437

(110) 995 995 1214 718
(111) 670 670 960 468

Source: From [131].
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Figure 14.34. Silver concentration in each atomic layer as a function of layer number, for four
different temperatures. The vertical dashed lines represent the locations of the physical inter-
faces, where the number of atoms per layer changes from that appropriate to a copper-rich
slab to that of a silver-rich slab. Reprinted with permission from [132] by Elsevier Science Ltd.,

Oxford, England.

interface is asymmetric in Figure 14.34. This interface is associated with a Gibbsian
excess of silver if the position of the dividing surface is chosen at the physical inter-
face. As in many of the EAM studies discussed before, detailed examination of the
atomic positions revealed that the distribution of silver and copper in the layers was
not uniform, with the larger silver atoms tending to cluster in regions of tension at
the interface and the smaller copper atoms in regions of compression. It was also
observed that the interfacial dislocations were localized and symmetrical at 600 K,
but that they tended to wander with increasing temperature and appeared to loose
their identify between 800 and 900 K, possibly indicating the transition to an inco-
herent interface in that temperature range. The overall features of this interface are
similar to those revealed by the regular solution calculation discussed in Section

14.5.4.

14.6. INTERFACES BETWEEN PHASES WITH DIFFERENT
BRAVAIS LATTICES

In Sections 14.2 and 14.5, we considered coherent and semicoherent interfaces be-
tween two phases with the same crystal structure but different compositions. The
phases also had the same orientation, often referred to as a parallel or cube-on-
cube orientation relationship. Many heterophase interfaces form between two
phases with different Bravais lattices, and we need to understand the behavior of
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these types of interfaces. These are the most complicated interfaces, but we wit
see that they display similar behavior in an attempt to minimize the interphass
boundary energy. As before, we limit our discussion to metal-metal interfaces, but
it is important to realize that the same principles and behavior apply to other hes-
erophase interfaces, such as metal—ceramic [3,22], ceramic—polymer [4] and sems-
conductor—semiconductor [5] materials.

14.6.1. Orientation Relationships at Heterophase Interfaces

In Section 7.2.4, we showed that there was a strong tendency for a thin film of ons
crystal structure on a substrate with a different crystal structure to align such that
their close-packed planes and directions were parallel. This was referred to as atom-
ic row matching [20] and the same phenomenon occurs for heterophase interfaces
between two semiinfinite crystals with different structures. In the case of a marten-
sitic transformation the two phases may have the same composition but different
crystal structures, such as the f.c.c.-h.c.p. interface in a cobalt-nickel alloy, 2s
shown in Figure 12.4, for example; however, in a diffusional transformation, the
phases may vary both in structure and composition, as illustrated by a similar
f.c.c—h.c.p. interface in an aluminum-silver alloy (Fig. 14.35). In both of these fig-
ures, the viewing direction is [101]fcc i 120]h¢p and the orientation relationship
between the two phases is

(1 1 l)f.c.c.”(OOO 1 )h.c.p.; [IOT]f.c.c.”[l 150]h.c.p.' (14-443)

*3*&#‘*#@*

o A ey

*#Q%l#&*‘ﬁ*&&

Figure 14.35. Experimental HRTEM image of a vy’ (Ag,Al) precipitate interface in an alu-
minum-silver alloy with a superimposed simulated image of the interface. The position of the
interface between the f.c.c. and h.c.p. phases is indicated by a line. From [23] copyright Taylor
& Francis Ltd.
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This is the so-called Shoji-Nishiyama (SN) orientation relationship [134], and the
parallel close-packed planes are edge-on and horizontal in Figure 14.35. Note that
the interface plane (often called the habit plane when referring to plate or lath-
shaped precipitates) is the parallel close-packed planes in the two structures. The
lattice parameters are such that the hexagonal arrangement of atoms in the {111}
and (0001) close-packed planes of the phases in Figures 12.4 and 14.35 match al-
most perfectly and large coherent interfaces are formed. In this case, there are no
nearest-neighbor broken bonds across the interface, only bonds that have a compo-
sitional difference, as in Figure 14.35, or a stacking difference (Section 13.2.5), as
in Figure 12.4. Consequently, these are expected to be low-energy interfaces with
interfacial energies of approximately 15 and 30 mJ/m?, respectively, at room tem-
perature [135,136].

As in the f.c.c.—h.c.p. example above, relatively good atomic matching oc-
curs between the close-packed planes of b.c.c. phases and the f.c.c. and h.c.p.
phases. The f.c.c.-b.c.c. case was illustrated previously in Figure 7.10 and a simi-
lar figure can be constructed for a b.c.c.-h.c.p. interface. This leads to two other
well-known orientation relationships, which are similar to Eq. (14.44a) called the
Kurdjumov—Sachs (KS) [137] orientation relationship

(1 1 1)fcc"(1 1O)b.c.z:.; [OTl]fcc"[lTI]bcc’ (1444b)

where the close-packed planes and direction in the f.c.c. and b.c.c. phases are paral-
lel, and the Burgers [138] orientation relationship

(1 lo)bcc”(OOO 1 )h.c.p.; [l-l-l]bcc”[l liolh.c.p.a ( 14440)

where the close-packed planes and directions of the b.c.c. and h.c.p. phases are par-
allel. Another common orientation relationship is the Nishiyama-Wasserman (NW)
orientation relationship [139,140], where the close-packed directions in the f.c.c.
and b.c.c. phases are rotated out of alignment by 5.26° so that [011]¢c[[[001]c.c.
(as shown in Fig. 7.10a). A similar rotated situation in the b.c.c.-h.c.p. system
where [110],,.][[0110],.,. is called the Pitsch—Schrader orientation relationship
[141]. These and other orientation relationships commonly found in
f.c.c.—b.c.c.—h.c.p. systems have been analyzed by Dahmen [20]. They are expressed
according to Eq. (13.8).

It is important to note that the basic arrangement of atoms in the close-packed
planes of f.c.c., b.c.c. and h.c.p. crystals (e.g., in Fig. 7.10) is a rhombus and that
aligning the close-packed planes in the crystals across the interface is equivalent to
matching the rhombohedral symmetries of the atomic arrangements of the low-en-
ergy close-packed planes in the structures [20,142,143]. Aligning particular rows of
atoms in these planes (row matching) further reduces the energy of the interfaces.
This feature has been demonstrated in energetic calculations by van der Merwe
[142] and others [144-146], which show that the orientation relationships above
minimize the elastic strain energy of the interfaces. An example of such data was
previously shown in Figure 7.11 for the (111)¢¢ . [[(110)y... interface. Thus, the in-
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terfacial energy of most heterophase interfaces is minimized through atomic row-
matching, and this criterion usually determines the equilibrium orientation relation-
ship between two different phases.

Dahmen [20] has shown that the rows of atoms that superimpose between the
two crystals in Figure 7.10b can be viewed as an invariant line between the two
structures. In a continuum sense, an invariant line is a direction that is both undis-
torted and unrotated when one crystal structure transforms into another. This is il-
lustrated schematically in Figure 14.36. In Figures 7.10a and 14.36a, we imagine
that a unit cell of the b.c.c. lattice (open circles) is transformed into a unit cell of the
f.c.c. lattice (filled circles) by an expansion e,,(b) along the y direction and a con-
traction e,;(a) along the x direction. This defines both the lattice correspondence
and the transformation strain. The two axes x and y are the principal axes of the
transformation and this operation may be written as a diagonal matrix

0
A= [e“ ] (14.45)
0 exn

when related to the principal coordinate system. The length of a vector u will
change to |v| = |Au| during the transformation. This is the well-known description of
the deformation of a circle (2 + u2 = 1) into an ellipse (vZ/a + v2/b = 1) with major
axes a and b. An illustration of the continuum deformation corresponding to Figure
7.10a is shown in Figure 14.36, where the circle represents the b.c.c. plane and the
ellipse the f.c.c. plane. Any radius vector on the circle will change both length and

direction during the transformation. A special vector is the one ending at C because
it changes direction from C to C’ but its length is preserved. If the directional
change from C to C' is compensated by a rigid-body rotation of the transformed
structure (ellipse) it will become an invariant line (i.e., an undistorted and unrotated

GANY

Figure 14.36. The lattice strain of Figure 7.10 in continuum representation. (a) The circle
(b.c.c. plane) is transformed into an ellipse (f.c.c. or h.c.p. plane). (b) A small rotation bringing
C and C’ into coincidence produces an invariant line. Reprinted with permission from [20] by
Elsevier Science Ltd., Oxford, England.
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direction during the transformation). In terms of matrix notation, the total deforma-
tion in Figure 14.36b can be decomposed into the shape deformation A and a rigid-
body rotation R, or RA. Because the rows of atoms along the [011]¢. o [[[111]yc.. di-
rection in Figure 7.10b exactly superimpose, they satisfy this criterion (i.e., they
form an invariant line on an atomic level).

Due to the special choice of lattice parameters in Figure 7.10b, the invariant
line coincides with the low-index close-packed direction. This is not usually the
case, and in general the invariant line is a nonrational direction. Dahmen [20] has
used matrix algebra to find the angle of rotation that is necessary to form an invari-
ant line as a function of the ratio of the principal distortions e,;(a) and e,,(b). Be-
cause e;; and e,, have a constant ratio for a given f.c.c.-b.c.c. or h.c.p.-b.c.c. trans-
formation, the angle 6 simply becomes a function of the lattice parameter ratios r =
Qfec/Apec. OF \/-iahic.p,/ahc.c, This function is shown in Figure 14.37, where it can
be seen that 8 varies rapidly from 0° at the exact NW orientation relationship for r <
1/7/2 and t > \/3/2 to a wide maximum at the exact KS orientation relationship at
5.26° for 3/4 < r < \/6/3. Thus, the NW and KS orientation relationships cover
most of the possible rotations between the close-packed planes, which is why they
are the dominant orientation relationships found experimentally [20,147]. The ener-
getic calculations by van der Merwe [142] show that the NW and KS orientations
are also the lowest energy orientations. Thus, the geometrical analysis of Dahmen
agrees with the energetic calculations of van der Merwe and others. It has been
shown that the formation of an invariant line as described above is exactly analo-
gous to forming O-lines in the interface (Fig. 13.17) and that the same result can be
obtained by either theory [148-150].
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Figure 14.37. Rotation angle 6 necessary to produce an invariant line by rotation around the
normal to the close-packed planes as a function of the lattice parameter ratio r. From [20,147]
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14.6.2. High-Index Heterophase Interfaces

It is possible to have a fully coherent f.c.c.—h.c.p. interface if the atomic sizes ==
similar in the two phases, as in the aluminum-silver system shown in Figure 1435
In contrast, even if the atom sizes are the same, it is not possible to have fully cohes
ent f.c.c.—b.c.c. and h.c.p.~b.c.c. heterophase interfaces because the sixfold symms-
tries of the close-packed {111}¢ . and (0001), ., planes do not match the twofic
symmetry of the {110}y plane. Hence, these interfaces must be semicoherent
some directions. This feature is illustrated schematically in Figure 14.38, whers &
lattice parameter ratio has been adjusted so that the thombohedral patterns of atoms=
in the f.c.c. (filled circles) and b.c.c. (open circles) have exactly the same spacimg
along the y direction (i.e., t = Qg /Ay = 1.15). This produces atomic row mas-
ing parallel to the x direction as indicated by the heavy dashed line. Normal to
direction are rows of perfectly matched atoms (invariant lines or O-lines) with com-
plete disregistry in between. The regions of disregistry correspond to edge misfE
dislocations in the interface, parallel to the invariant line. This situation is analogous
to the semicoherent interfaces shown in Figures 13.18d and 14.24, except that &=
phases on either side of the interface have different lattices. We now show that & =
possible to transform this semicoherent interface into a fully coherent interface =
rotating the interface plane so that it is no longer parallel to the common clos=-
packed planes.

Figure 14.39 shows four different interfacial structures that could form 5e-
tween two crystals that are related by a transformation strain that includes a simpis
shear e,, and an expansion e, in the shear plane so that the transformation maws
[151,152] can be written as

_|en €2
A—[O 1]. (1445

This deformation changes a square (top crystal in Fig. 14.39) into a rhombus (bes-
tom crystal in Fig. 14.39) and leaves the spacing of the planes normal to the direz-
tion of the shear equal. This type of deformation is appropriate to the f.c.c.—bce
transformation and in fact, the lines that form the square lattice in Figure 14.39 ca=
be imagined to be the {110} planes of the b.c.c. phase and the set of lines that form
the rhombus in the opposite crystal can be imagined as the {111} planes of the f.c.c
phase [55,152]. Thus, this schematic represents a fairly general f.c.c.-b.c.c. intes-
face.

Figure 14.39a shows the interface parallel to the shear plane (the parali=
{111}.. and {110}, planes), with the misfit in this plane accommodated by ==
array of a/2<110> lattice dislocations in the square (b.c.c.) lattice. This interface =
analogous to that in Figure 14.38. In Figure 14.39b, the interface plane has been ro-
tated through an angle 0 that is related to the shear strain e,, and the dilatations
strain e;; [151-153] by

tan 0 = € 1/912. (144',
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Figure 14.38. Schematic diagram representing the rhombic surface unit cells ofa {111} f.c.c.
plane (filled circles) and a {110} b.c.c. plane (open circles) when t = Qtcc/Opcc. = 1.15. From
[143].

This produces an interface along a high-index direction u, which is an undistorted
and unrotated direction in the two crystals (i.e., it is an invariant line). If this invari-
ant line is resolved onto every other close-packed plane, the staggered array of
ledges shown in Figure 4.91c is formed. This type of interface corresponds to the
f.c.c.—h.c.p. transformation, which is discussed further in the following section on
the TLK structure of heterophase interfaces. In the f.c.c.—h.c.p. case, each ledge is
bounded by an a/6<112> partial dislocation, which accomplishes the structural part
of the transformation. If instead, the invariant line is resolved onto every close-
packed plane, the staggered array in Figure 14.39d results. This is the case of an
f.c.c.—b.c.c. transformation interface with every ledge bounded by an a/12<112>
partial dislocation [17]. An example of such an interface is shown in Figure 12.7
(also shown enlarged in Problem 14.23).

In the area of diffusional transformations, the ledges in Figure 14.39d are of-
ten called structural ledges because they are considered an intrinsic part of the inter-
facial structure [55,56]. Experimental evidence suggests that they are relatively im-
mobile and that growth occurs locally at larger ledges or perturbations which move
along the interface [154]. In martensitic transformations, such ledges are highly
mobile and accomplish the required structural transformation [1,17]. Thus, they are
often called transformation dislocation ledges. It is important to note that all of the
linear defects shown in Figure 14.39 can be characterized according to their disloca-
tion and ledge contents within the DSC framework discussed in Section 13.23 and
illustrated, for example, in Figures 13.24 and 13.25. Crystallographically, the ledges
illustrated in Figure 14.39d are identical in martensitic and diffusional transforma-
tions, although their kinetic behavior may be different in the two types of transfor-
mation.
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The interface in Figure 14.39 is only a two-dimensional sketch, and the be-
havior of the crystals in the third dimension has been omitted for clarity. In many in-
terfaces, there is additional misfit in the third dimension, which can be accommo-
dated by another set of misfit dislocations in the interface parallel to the invariant
line u as illustrated in Figure 14.40a. Alternatively, these dislocations can be trans-
formed into a second set of ledges on the close-packed planes perpendicular to the
first set that produces a second high-index direction v in the interface, as illustrated
in Figure 14.40b.

Still more complicated situations can be envisioned and are often found at
heterophase interfaces in materials. For example, suppose that, in addition to the

fraede e cmccmc e cicrccecccmrcc e em e e

., Oxford, England.

ach ledge Is an a/6<112> partial dislocation. (d) The invarlant line is resolved onto
~b.c.c. transformation where each ledge contains an a/12<112> partial disloca-

b

varlant line u and no dislocations are necessary. (¢) The invarlant line Is resolved onto every other close-packed plane as in

the f.c.c.~h.c.p. transformation where e

every close-packed plane as in an f.c.c
tion. Reprinted with permission from [153] by Elsevier Science Ltd

Figure 14.40. (a) The interface in Figure 14.39d in perspective with the crystal lattices omitted
for clarity. Additional misfit in the direction v is accommodated by a set of lattice misfit dislo-
cations similar to those in Figure 14.39a. (b) A geometrically glissile invariant plane strain inter-
face as in a martensite transformation. The direction v is now high-index and an additional
simple shear is accommodated by a set of dislocations which are glissile in the interface.
Reprinted with permission from [153] by Elsevier Science Ltd., Oxford, England.
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shear and dilatation in Figure 14.40, there is a dilatation (misfit) normal to the plane
of the shear so that the close-packed planes that are parallel to the interface in Fig-
ure 14.39a no longer have the same interplanar spacing. This misfit can be accom-
modated in one of two ways: (a) by inserting misfit dislocations periodically along
the interface [55,143] (as illustrated in Fig. 14.41), or (b) by partitioning the strain
evenly among all the ledges in Figure 14.39d, which is equivalent to performing z
small rigid-body rotation between the two crystals about an axis that is normal to
the plane of the figure similar to that shown in Figure 14.36 [155]. Both cases have
been observed experimentally, but one partitions the misfit evenly along the sur-
face, whereas the other localizes it into misfit dislocations.

Figure 14.39 showed schematically how a semicoherent planar interface be-
tween two crystals could transform into a coherent ledged interface containing an
invariant line by rotation of the interface plane. The energetics of this process have
been calculated by van der Merwe et al. [56] and shown to be favorable for small
misfits and large pattern advances when the interface is stepped. The idea of pattern
advance created by a stepped (ledged) interface is illustrated in Figure 14.42. Figure
14.42a shows an invariant line formed between two crystals and is similar to Figure
14.39b. In Figure 14.42b, the same interface is shown on an atomic level where
ledges spaced periodically along the interface are evident. Notice that when crystal
B steps down one plane parallel to the interface at a ledge, a pattern of the lattice a
distance of 3by; o) advances to the left, as indicated in the figure. According to theo-
ry [56], the center-to-center distance of consecutive terraces Dy o0) along the [100]
direction in the close-packed plane is given as

—dbyy00)

, 14.48
D=1 (14.48)

Da[lOO] =

L[ [ [ [T 7 777777777
I I
/////////////////7
[ [ [ ] ] 777
[ [ ] ]7] ///////J/
/////////
[ [ ] ]

™

bee
Figure 14.41. lllustration of additional misfit normal to the close-packed planes in Figure

14.39b accommodated by a misfit dislocation with a Burgers vector inclined to the invariant
line. Reprinted with permission from [152] by Elsevier Science Ltd., Oxford, England.
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Figure 14.42. (a) lllustration of the invariant line formed due to a transformation involving a
simple shear plus uniaxial expansion in the shear plane, and (b) atomic model of the interface
constructed according to the pattern advance (structural ledge) treatment. Reprinted with per-
mission from [152] by Elsevier Science Ltd., Oxford, England.
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where 8Dy, is the forward displacement of the B atomic ledge and by, o, is the ke
tice spacing of the B crystal along the [100] direction, as indicated in Figure 14.42%
The angle between [100] and the habit plane is then given by

a,

tan 6 = ——; (1449
Dq(100)

where a; is the lattice spacing normal to the parallel close-packed planes. Equatios
(14.49) produces a result identical to Eq. (14.47) for the transformation strain in Ex
(14.46), but now based on atomic pattern matching across the interface. This 2z~
proach to interfacial structure has been highly developed [56,143] and compar=s
with the invariant line theory [149,152], and can be useful for analyzing high-indes
ledged interfacial structures [43,155].

To illustrate the use of the invariant-line and structural-ledge treatments, com-
sider the interface shown in Figure 14.42. Crystal B is produced from crystal 4 by =
simple shear e, = 0.34 accompanied by a 10% expansion in the (001) shear plam=
such that e;; = 1.1. The corresponding transformation matrix (Eq. 14.46) is

A[ L1 034
o

When these values are substituted into Eq. (14.47), the angle between the [100] &-
rection and the invariant line is given by 6 = 16.7°. The resulting interface betwee=
the two lattices is shown in Figure 14.42a. According to the structural-ledge trez:-
ment, the center-to-center distance between consecutive (001) terraces along the
[100] direction is given by Eq. (14.48) as

0.34

a[100]= 11-1 =3.34

or 3.34 (100), lattice planes. The angle between the [100] direction and the hab=
plane is then given by 6 = tan~!(1/3.34) = 16.7°, which is identical to the answer
above for the invariant-line theory. This interface is shown in Figure 14.42b. In this
calculation, we used the transformation matrix A to determine the orientation of the
habit plane according to Eqgs. (14.48) and (14.49). It is also possible to determins
the habit plane based on the relative displacements of atomic patterns in two phases
across an interface [56]. This method was used to analyze the formation of the
{474}, habit plane shown in Figure 12.7 and the reader may consult [16] for an ex-
ample calculation.

In closing this section, it is important to mention that a number of different
approaches to predicting and analyzing heterophase interfaces have been proposes
and utilized with various degrees of success. These include the O-lattice, CSL ané
DSC theories discussed in Sections 13.2.2 and 13.2.3., the invariant-line and pat-
tern-matching theories just mentioned, as well as the phenomenological theory of
martensite crystallography [1,156,157]. We have used several of these in the analy-
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ses above and a number are compared in the literature [16,42,52,58,127,149,152].
Each approach has its own strengths and weaknesses, requires certain input, and
most yield similar if not identical results. The reader should consult these references
for more detailed descriptions of the various theories on solid—solid interphase
boundary structures.

It is also important to note that all of the energetic calculations performed for
the ledged interfaces described above only included the structural (elastic) energy
contribution (y$S) to the interphase boundary energy. Calculations that include the
compositional contribution (y$S) of wrong compositional bonds across ledged in-
terphase boundaries, such as those in Figures 12.7 and 14.39d, are just beginning to
be performed; these are discussed in the following section.

14.6.3. Atomistic Calculations

Atomistic calculations of the interfacial properties of high-index interfaces between
crystals that have a well-defined orientation relationship but different Bravais lat-
tices and compositions are just beginning to be performed. So far, all of the calcula-
tions have been performed for f.c.c.-b.c.c. interfaces similar to those shown in Fig-
ures 12.7 and 14.42, because this represents an important and fairly common type
of interface. Some of the results from atomistic calculations of the high-index inter-
faces are summarized below.

Figure 14.43a shows an atomistic model of a high-index f.c.c.-b.c.c. inter-
face. The interface was constructed using a NW orientation relationship between
the phases and an EAM iron potential (e.g., appropriate for an f.c.c.~b.c.c. marten-
site interface). Approximate interfacial energies were obtained with fully relaxed
simulation conditions for interfaces with orientations that varied from 0 to 26° with
respect to the parallel close-packed (111)¢.[(110),c.. planes. The calculations
showed that an interface with monatomic ledges, inclined about 13° with respect to
the parallel close-packed planes, yielded the lowest interfacial energy with a value
of about 240 mJ/m2. This interface is shown in Figure 14.43b, and it is the maxi-
mum coherency interface observed experimentally [158]. A similar calculation for a
(121)¢. . interface between f.c.c. and b.c.c. iron phases with a KS orientation rela-
tionship yielded an interphase boundary energy of 179 mJ/m? [100]. Both of these
interfacial energies are considerably lower than the energies of the semicoherent in-
terfaces modeled using the EAM potentials in Section 14.5.5., indicating that it is
energetically favorable for semicoherent interfaces to form coherent ledged inter-
faces, as illustrated schematically in Figure 14.39.

The most recent study of this type was performed for a (121); . interface be-
tween nickel and chromium crystals (and alloys) in a KS orientation relationship us-
ing EAM potentials [102]. A projection of the atomic structure of this interface for
pure nickel and chromium is shown in Figure 14.44. This study is particularly inter-
esting because f.c.c. nickel can accommodate up to almost 50 at.% chromium (the
heat of mixing is approximately 0.06 eV/atom) and, therefore, it is possible to ex-
amine the interfacial structure and energy as a function of chromium concentration
in the f.c.c. phase. It was found that the interfacial energy varies only slightly with
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179 mJ/m? found for the same (121)¢ . interface with an iron potential above, and
it does not vary more than 10% with composition, these results indicate that the ma-
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Figure 14.44. Two views of the relaxed structure of a simulation block of the (121); .. inter-
face for pure f.c.c. nickel and b.c.c. chromium crystals. Different shapes (squares, triangles
and circles) are used to represent atoms on different (202);¢c. and (222)y c.c. planes parallel to
the paper. The final positions of nickel and chromium atoms are represented by empty and
filed shapes, respectively. Relative relaxations indicated by lines attached to the atoms are
enlarged 10 times to show their directions. From [102].

face. This type of interface represents the upper limit of coherent interphase bound-
ary energies shown in Table 14.1.

14.7. TERRACE-LEDGE-KINK STRUCTURE OF
INTERPHASE BOUNDARIES

When two phases with different compositions but the same crystal structure (Bra-
vais lattice) are separated by a coherent interface, as in the case of the G.P. zone in
Figure 12.3, for example, the interface can advance by the replacement of atoms in
the o phase on one side of the interface with B atoms by normal lattice diffusion in-
volving vacancies. At temperatures above approximately 0.57,, where significant
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lattice diffusion occurs, coherent interfaces of this type are relatively diffuse (refer
to Figs. 14.3 and 14.5) and there is little barrier to atomic attachment to the inter-
face. Thus, migration is any easy process and is expected to occur as fast as trans-
port of atoms to and away from the interface can occur. This is referred to as diffu-
sion-controlled interfacial motion and the kinetics of this process are described i=
detail in the following chapter. The same arguments apply if the interface is semico-
herent, as in Figure 14.24, provided the misfit dislocations can climb by vacancy
creation or annihilation.

A much different situation arises when the two phases forming a coherent or
semicoherent interface have different Bravais lattices, particularly if a shear strain
e;; is involved in the transformation, as in Eq. (14.46) and Figure 14.39. For exam-
ple, consider the situation of either of the coherent close-packed interfaces between
the f.c.c. and h.c.p. crystals in Figures 12.4 and 14.35. If growth of the h.c.p. phase
were to occur by individual atomic attachment randomly on the interface (i.e., by
so-called continuous growth, see Sections 5.1 and 10.1), this would require that
atoms on C sites in the f.c.c. phase at the interface move into B positions, as illus-
trated in Figure 14.45. This is a very unfavorable situation energetically, as it puts
two atoms in B positions directly across from one another at the interface and it also
creates a distortion field around the atom (i.e., it effectively creates a loop of
a/6<112> Shockley partial dislocation around the atom). These two effects create 2
large energy barrier for such an event and promote atoms in the f.c.c. phase to re-
main in C sites at the interface. The same situation is encountered in the coherent
regions of semicoherent interfaces separating different phases with different crystal
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structures. This situation is very much analogous to the case of solid—vapor and sol-
id-liquid interfaces, where attachment of single atoms to vicinal surfaces is much
more favorable energetically when it occurs at kinks in ledges than on the terraces.
In the solid—vapor case, this preferred attachment can be argued by a simple broken-
bond model. The same rationale applies to solid—solid interfaces, except that now
we must think of wrong compositional bonds across the interface instead of broken
bonds. We must also include the strain energy increase indicated by the partial dis-
locations in Figure 14.45, which requires bond stretching and is very unfavor-
able energetically. Thus, motion of coherent and semicoherent interfaces between
phases with different crystal structures rarely occurs by a continuous growth mech-
anism.

Migration of these coherent and semicoherent interfaces requires nucleation of
ledges that propagate by kinks, just like the vicinal solid-vapor interfaces described
in Section 5.2. Thus, the situation is analogous to that of solid—vapor interfaces de-
scribed in Section 5.2, except that the elastic strain energy associated with nucleation
of a pillbox at a solid-solid interface as illustrated for the f.c.c.—h.c.p. interface in
Figure 14.45 imposes an additional barrier to nucleation not present at solid surfaces.
The strain energy associated with this process is discussed by Christian [1] and is not
elaborated further here. With sufficient driving force, ledges nucleate and propagate
across heterophase solid—solid interfaces by a terrace—ledge-kink mechanism
[23,121] in much the same way as for solid—vapor interfaces.

In the case of solid—solid interfaces, ledges have been found to nucleate by
the three mechanisms previously described for solid—vapor interfaces in Section
5.2.1: (a) by dislocations intersecting the interface, (b) by forming vicinal surfaces
(e.g., Fig. 12.7) and (c) by two-dimensional nucleation and growth. In the case of
precipitates in alloys a variety of other ledge sources have been identified, a com-
mon one being particle intersections [159,160]. Unlike the case of two-dimensional
nucleation at surfaces, it is difficult to observe nucleation events in solids and two-
dimensional nucleation and other mechanisms of nucleation at solid—solid inter-
faces have not been quantified to the same extent as at solid—vapor interfaces. The
formation of kinks in ledges at solid—solid interfaces was studied in situ by hot-
stage TEM [161] and found to occur by (a) two-dimensional nucleation, (b) devia-
tion of a ledge from a low-energy close-packed direction (i.e., analogous to the vic-
inal surface as in Fig. 4.2), and (c) intersection of ledges. Thus, the mechanisms and
kinetics of kink nucleation at solid—solid interfaces are analogous to those of ledges,
which are analogous to those found at solid—vapor interfaces except that elastic
strain is often present.

Some of the most convincing evidence for the TLK mechanism of growth of
coherent and semicoherent interfaces has come from recent in situ hot-stage HRTEM
analyses of 6-Al,Cu precipitates in an aluminum—copper-magnesium-silver alloy by
Howe et al. [162,163]. These investigators studied the motion of ledges on the faces
and at the edges of 8 precipitate plates during growth and dissolution in the TEM.
Figure 14.46a shows an HRTEM image of a ledge on the face of a 0 plate in the a-Al
matrix viewed edge-on, parallel to the {111}, habit plane. The {111}, planes appear

as bright lines in the right side of the figure and the ledge is two {111 }o matrix plane
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high (one-half of a unit cell of the 6 phase). The image shown was photographed dus-
ing in situ growth at about 220°C, and the ledge was observed to oscillate sever=
times per second over a distance of approximately two unit-cells of the 8 phase 2= =
moved across the plate face with constant overall velocity in the direction indicas=s
by an arrow. Enhanced atomic motion at the ledge is evidenced by blurring of the =
age in the region enclosed by a dashed line. Additional in sifu experiments performes
perpendicular to the plate faces (terraces) along a <111>, matrix direction demos-
strated that the oscillatory motion of the ledge in Figure 14.46 was caused by the for-
mation and annihilation of kinks along the ledge. One such kink, photographed 2s =
moved along the plate edge, is shown in Figure 14.46b. The kinks are responsible fr
motion of the ledges both at the edges of the plates and on the plate faces (terraces .
They were also found to change their spacing along the edge so that the 6 plates cowic
roughen and facet within the habit plane as the temperature was raised and lowers.
just like the germanium precipitates shown previously in Figure 14.14. Thus, the t==-
race—ledge—kink (TLK) model of vicinal surfaces shown in Figure 4.1 applies to co-
herent and semicoherent solid-solid interfaces when the phases have different crys-
tal structures across the interface.

When ledges, such as the one in Figure 14.46a transform one crystal structur=
into another, they usually have a dislocation character and an associated strain ener-
gy. Thus, any increase in their length increases their energy, and they tend to be r=i-
atively straight. This depends only on the lattices of the crystals and is true for inter-
faces whether or not there is a compositional change across the interface. When
there is also a compositional change across the interface, the formation of addition-
al wrong bonds caused by kinks in the ledges provides a second driving force tha
tends to keep the ledges straight. In f.c.c., h.c.p. and b.c.c. systems, the ledges ca=
often minimize both their elastic and compositional energies by aligning along the
close-packed directions in the crystals, and this is observed experimentally. Thus.
the orientation relationships discussed in Section 14.6.1 tend to align the close-
packed planes and directions between the crystals, and the additional considerations
just mentioned further tend to insure that ledges are aligned along the relatively
low-index close-packed directions in the interfaces.

In a manner analogous to Figure 14.45, the extra energy associated with per-
turbing the ledges provides an activation barrier to kink nucleation in solids, ané
ledges can become immobile in the absence of kinks [121,161]. However, once =
kink forms, it is favorable for atoms to attach to it rather than to attach randomfy
along the ledge, because it does not further increase the length of the ledge or the
number of wrong bonds, which is analogous to the solid—vapor situation. It has also
been suggested that extra strain associated with kinks helps facilitate substitutiona!
diffusion across the interface at these sites [23]. These concepts apply whether the
ledge moves with or without a corresponding compositional change [164].

Another interesting problem that arises in the case of coherent and semico-
herent interfaces in solids, which is not a consideration for solid—vapor or solid-lig-
uid interfaces, is how misfit dislocations and structural ledges present at an inter-
face advance to a new terrace as a growing ledge moves across the interface. This
situation is depicted for a misfit dislocation in Figure 14.47. Several possible mech-
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14.7. TERRACE-LEDGE-KINK STRUCTURE OF INTERPHASE BOUNDARIES
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anisms have been proposed, such as climb of the misfit dislocations up the ledg=s.
glide of the misfit dislocations along the terraces in front of the ledge, and so for®
[165]. There is experimental evidence for some of the proposed mechanisms [154.
166], but this area has not been thoroughly explored.

PROBLEMS

14.1.

14.2.

Why might Eq. (14.1) not be applicable when the phases across a coherent i=-
terphase boundary have different crystal structures?

(a) Use Eq. (14.16) together with Eq. (14.11) to plot the interfacial energy
v 53§ of an aluminum-zinc alloy with composition X, = 0.4 from 25°C =
the critical temperature T, = 351.5°C. The aluminum-zinc phase diagram
is shown in Problem 2.8.

(b) Make three sketches of the interface profile for the aluminum-zinc sys-
tem at 7= 0 K, T./5 and T,. Explain the physical basis of these sketch-
es.

. The interfacial energy for a coherent interface y5S was calculated for =

gold-50 at.% nickel alloy at 400°C in Section 14.2.1. Repeat the calculations
for gold—copper and gold-platinum alloys under the same conditions and ex-
plain any trends in your results.

. On the same figure, sketch the interface profiles for two different regular so-

lution alloys (4 and B) with the same solute content X at the same temperz-
ture T./5, where the regular solution parameter of the solid phase (S is signif-
icantly greater in alloy 4 than in alloy B.

. Using Eq. (4.3) and the data in Table 1 in the article by Cahn and Hilliard [1

Chem. Phys., 28,258 (1958)], plot y %2 versus T for neon, argon, nitrogen and
oxygen. Compare the results and explain any trends.

. Show that the partial molar free energy of each species in an 4-B alloy is the
same everywhere within the interphase boundary region, where the composi-
tion varies rapidly with distance normal to the interface. You may use either
the continuum or DLP approach.

. Explain why fully coherent precipitates with a small misfit tend to loose co-

herency as they grow.

. The figure below (from [113]) shows a [010] projection of two ordered do-

mains of L1, phase with (001), (100) and (110) APBs. Determine whether
each boundary is conservative or nonconservative and explain your reason-
ing. X indicates sites preferentially occupied by minority species. Large and
small circles indicate, respectively, atomic sites on alternate planes with dif-
fering elevations.
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14.9. Use Eq. (14.30) to calculate the APB energy on the {111} planes in the L1,

structures CusAu and CusPt. Explain any difference in the energies based on
nearest-neighbor bonding.

14.10. Calculate the APB energy Yap, on the {111} plane in Cu;Au and compare it

with the {111} interphase boundary energy ~ 58 between copper- and gold-
rich phases, assuming negligible solid solubility in each phase.

14.11. Explain the structures and energies of coherent, semicoherent and incoher-

ent interfaces with particular reference to the role of orientation relation-
ships and misfit.

14.12. Consider a {110} interphase boundary formed between two identically ori-

ented b.c.c. crystals that differ in composition and lattice parameter.

(a) Determine the geometry of the misfit dislocation array for dislocations
with an a/2<111> Burgers vector. Repeat for dislocations with an
a<100> Burgers vector.

(b) Calculate the relative structural interfacial energy v5S of these two dis-
location arrays, assuming that the energy is proportional to the square
of the magnitude of the Burgers vector.

(c) Which dislocation array is more likely to appear on the basis of mini-
mum interfacial energy?

(d) Under what conditions will the chemical component of the interphase
boundary energy of these two interfaces become of minor importance

relative to the structural component?
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14.13. A 20-nm-thick film of pure silicon is deposited on a (100) Ge,Si,., substrz=

where the lattice mismatch is 1.9%.

(a) The lattice parameters of silicon and germanium are 0.543 nm and 0.55¢
nm, respectively. What is the value of x in Ge,Si,_,?

(b) Dislocations are formed with Burgers vectors b oriented along ==
<110> directions. For silicon, Poisson’s ratio is 0.272 and the shear mac-
ulus is 0.67x10'" N/m?2. Assume the elastic stress field of the misfit dis-
locations extends 20 nm (the film thickness). Find the magnitude of &=
Burgers vector b and the spacing of the misfit dislocations Dj.

(c) Calculate the interfacial energy y$S of an array of noninteracting edg=
dislocations with Burgers vector b.

14.14. Consider a film of f.c.c. copper (a = 0.3615 nm) on a gold substrate (a =

0.4079 nm), where the film is relaxed by misfit dislocations.

(a) Assume the interface plane is (111). If the misfit dislocations lie on the
(111) plane in the <110> directions, what is the magnitude of the Burz-
ers vector and the spacing of the dislocations?

(b) Assume the interface plane is (100). If the misfit dislocations lie on the
(111) plane in the <110> directions, what is the magnitude of the Burg-
ers vector and the spacing of the dislocations?

14.15. Derive Eq. (14.42).
14.16. A weak-beam dark-field TEM image of misfit dislocations between islands

of gallium antimonide sitting on a gallium arsenide substrate is shown below
(from [167]). The dislocations (white lines) are parallel to <110> directions
in the crystals.
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(a) Calculate the misfit across the interface assuming that the dislocations
have Burgers vectors b = a/2<110>.

(b) Compare the misfit in part (a) with that calculated using the lattice para-
meters of gallium antimonide and gallium arsenide and provide an ex-
planation for any differences in the values.

14.17. A Burgers circuit drawn around an interfacial dislocation at an annealed
CdTe/GaAs interface in a <110> HRTEM image is shown below (from
[14]). Determine the Burgers vector of the dislocation.

#iﬁtiii#?liii*#iﬂ%%%‘bt#
C*ﬁ*‘lii&iﬁii%i%i%‘"i#-ﬁiv
P Ea e BE w2 e ey e n

& % 5 8 5 28 3% 6% 0%

S =7 N
G N S A et ko #

. L E B B S PN ER o
P RBRBIE AN RSB PR BN
iﬁlv#ilﬁ%ti%éikiﬁ{:t&;{,\,*m‘
3§%‘#riiad#i*‘§§g—imﬁ;.%!g"

14.18. (a) Make a sketch similar to Figure 7.10 to illustrate the atomic matching
between the close-packed planes of b.c.c. and h.c.p. crystals when their
close-packed directions are aligned. ;

(b) What lattice parameter ratio (Apc.c/Ahcp) Would produce exact coinci-
dence of the atoms along the close-packed directions in the two crystals?

14.19. The transformation in Figures 7.10 and 14.36 can be represented by a trans- 4

formation matrix A that consists of a deformation S as in Eq. (14.45) and a
rigid body rotation R given by ’

= cos® -—sin®
_[sine cose]

as in Section 13.2.2, such that A = RS. Using these matrices, show that ‘
Dahmen’s invariant line is equivalent to an O-line. :
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(14.47) and (14.49). (a) Construct the DSC lattice for the interface. %
Je;;=0.1and e, = (b) Determine the Burgers vector of the ledge using the DSC lattice as the %
reference lattice. R
ials is shown below (c) Specify the Burgers vector of the ledge with reference to the b.c.c. and
orientation relation- h.c.p. phases.
icated on the figure. 14.23. An enlargement of several ledges in Figure 12.7 is shown below. The orien-
tation of the crystals in the image is [011],[[1T1], with the parallel close- j
: DSC lattice as the ‘ packed planes forming the terraces of the ledged interface. Construct the
DSC lattice for this interface and determine the ledge—dislocation character
.. and h.c.p. crystal of the ledges. The -y phase can be assumed to be f.c.c., the B2 phase is b.c.c.
and the crystals have the Burgers orientation relationship given in Eq.
(14.44b).
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